Cargando, por favor espere...
Imagine que usted emigra al extranjero y poco a poco van siendo asesinadas en serie personas a su alrededor. Usted sólo tiene tres pistas en papel (una por cada crimen): un círculo, un pescado y un triángulo. ¿Puede usted resolver esa serie lógica y así descubrir al asesino, predecir sus movimientos y evitar más muertes?
Ése es el argumento central de la novela Los crímenes de Oxford. Su autor, el doctor en Matemáticas y escritor argentino Guillermo Martínez, es un ejemplo de convergencia de estas dos áreas aparentemente disímiles: matemáticas y literatura. Es, a su vez, un profundo estudioso de la obra de Jorge Luis Borges. Su novela está llena de referencias de índole científica y de problemas matemáticos y filosóficos relacionados con la criminología.
Las series lógicas, a diferencia de las sucesiones estrictamente numéricas, pueden incluir letras, figuras o combinaciones de símbolos. La solución de una serie radica en asociarle una regla lógica o patrón para descubrir cuál es el elemento siguiente.
¿Existe solución única para una serie lógica? La respuesta es no. De acuerdo con Wittgenstein, “no es posible establecer una regla unívoca, siempre puede hallarse justificación para hallar un elemento siguiente”. Guillermo Martínez muestra cómo el término que sigue a 2, 4, 8, bien puede ser 16 o 10, según la regla que se emplee. Incluso el término que sigue a 2, 4, 8 y 16 puede ser 32 (multiplicando por 2) o puede ser 31, empleando geometría. Además de que dependemos del contexto y de la información disponible: un círculo puede ser pensado como un “cero”, como una letra “O”, como figura geométrica, como el punto cardinal Oeste, entre otros. Sugerimos al lector hallar el elemento que sigue a la serie “M”, corazón sobre una línea horizontal, “8”, que aparece en el libro.
Estas ideas se enriquecen cuando echamos un vistazo a la obra de Borges. En su libro Borges y la Matemática, Guillermo Martínez muestra de manera minuciosa cómo esta disciplina atraviesa el razonamiento de Borges. Muchos de sus textos tocan temas científicos y matemáticos de forma directa e indirecta; pero independientemente de ello, su estilo de redacción es rigurosamente lógico.
Las ideas de los muchos infinitos posibles, de la densidad o número de elementos en ellos aparece en obras como el Libro de Arena (no podría encontrarse la primera página de ese libro infinito como no podemos hallar la fracción más pequeña entre 0 y 1). El pensamiento abarcativo o autorreferenciado se halla presente en La Biblioteca de Babel (¿puede un conjunto ser elemento de sí mismo? ¿Puede hacerse un catálogo que contenga todos los libros?”). Esta idea es similar a la paradoja de Bertrand Russell del barbero que “sólo puede afeitar a los hombres que no se afeitan a sí mismos”, por tanto, el barbero puede y al mismo tiempo no puede afeitarse. Podemos ver su pensamiento geométrico en su biblioteca con salas hexagonales o en el inicio de su Libro de Arena: “La línea consta de un número infinito de puntos; el plano, de un número infinito de líneas; el volumen, de un número infinito de planos”.
En relación con la imposibilidad de establecer una regla única en una serie lógica, Guillermo Martínez recuerda el pasaje final de La Muerte y la Brújula: la víctima hace una petición a su asesino respecto al punto en que debe matarle: le pide avanzar ocho kilómetros, retroceder cuatro kilómetros y, finalmente, retroceder dos kilómetros. Borges ayuda al lector agregando un diagrama. Martínez, por su parte, señala que esta solución no es ni única ni evidente. Podría haberse seguido el patrón siguiente: avanzar-retroceder-avanzar.
La investigación criminal añade más variables a la solución de series lógicas, ya de por sí irresolubles de forma única. Es preciso forzarse a recordar, pero también a olvidar. Debe a un tiempo verse y no verse lo evidente: “el mejor sitio para ocultar una hoja es un bosque” (Jorge Luis Borges).
Entre marxistas es frecuente afirmar que lo más importante de Marx no fue lo que dijo, sino su método de conocimiento. Esto es así porque, así como el universo es infinito, también lo es su conocimiento.
La tenacidad en su trabajo le acompañó hasta una edad muy avanzada.
De todas las ciencias, probablemente es la matemática la que no tiene una definición precisa de su contenido.
En febrero de 2001 se publicaron los resultados de casi una década de trabajo del prometedor programa de investigación genética: Proyecto Genoma Humano, el cual logró descifrar el 90 por ciento del genoma humano.
La proteína es un macronutriente indispensable para el crecimiento y el mantenimiento de órganos y músculos en el cuerpo de los animales.
Las siete mil 700 millones de personas que hay en la Tierra, aunado al actual modelo de vida consumista y desenfrenado, aceleran las condiciones de cambio climático que estamos enfrentando, como el calor y el frío.
Isaac Newton tenía una visión matemática y física del mundo al mismo tiempo que una concepción metafísica y alquimista de la naturaleza que lo hacen admirable entre sus contemporáneos y entre los científicos de hoy.
El matemático que opera y crea los objetos que la matemática estudia, si puede tener compromiso con la realidad, éste lo conduce a un proceso de establecer isovalencias entre los problemas reales y los objetos matemáticos.
“Caffarelli tiene una intuición fantástica, es sencillamente notable… me costó mucho seguirle el ritmo. De algún modo, ve inmediatamente cosas que los otros no ven”, afirmó el afamado matemático Louis Nirenberg.
Toda investigación no es necesariamente científica, a veces se confunde con investigación tecnológica, o peor, con informes técnicos. Aclararemos estas confusiones en este artículo.
A pesar de todas las riquezas que posee África (y que aquí menciono), la gran mayoría de la población vive una situación muy deplorable, lo que representa una gran contradicción.
En la propuesta del Conacyt que ha circulado entre la comunidad, identificamos tres graves problemas: la confusión entre gobierno y Estado, la centralización de las decisiones y la falta de referencia al financiamiento estable.
El THC (presente en la marihuana y actúa sobre el sistema nervioso central) estimula la sobreproducción de dopamina, una hormona responsable del placer que se produce naturalmente ante acciones como comer o tener sexo.
Mientras el trabajo matemático tiene reglas, axiomas, y su libertad está en función de estar gobernado por sistemas formales; en el trabajo filosófico...
¿Realmente son nocivas para el ecosistema? Un ambientalista dirá: “sí, porque desplazan especies nativas”. Sin embargo, ciertas necesidades se satisfacen mejor con especies exóticas que con nativas, por lo que es necesario asumir riesgos.
México exporta más bajo reglas de la OMC que del T-MEC: Banco Base
"Shen Yun": evento que promueve adoctrinamiento contra China
Con represión responde alcaldía de Azcapotzalco a manifestación de artistas
Llevará a México hasta 30 años atender rezago en infraestructura escolar
¡Gratis! Trámite de Voluntad Anticipada para adultos mayores
Jóvenes artistas se manifiestan sobre la México-Pachuca por falta de apoyo
Escrito por Daniel Lara
Licenciado en Física por la UNAM y Maestro en Administración de Negocios. Docente de Física y Matemáticas en la UDEG y en la UPA. Actualmente se desempeña en la Dirección General de Estadísticas Económicas del Inegi.