Cargando, por favor espere...
En este capítulo nos introduciremos brevemente al desarrollo del pensamiento matemático y su estructura. El sustento del conocimiento matemático es el pensamiento hipotético-deductivo, que se desarrolló en la antigua Grecia; uno de los filósofos de la antigüedad que contribuyó a este desarrollo fue Aristóteles (384-322 a.C.), quien planteó las leyes básicas del pensamiento humano a fin de obtener deducciones válidas; estas leyes básicas son: 1) El principio de identidad, afirma que si un enunciado es verdadero, entonces es verdadero. 2) El principio de no contradicción, afirma que ningún enunciado puede ser verdadero y falso a la vez. 3) El principio del tercero excluido, afirma que un enunciado es verdadero o falso, no existen más posibilidades.
La lógica aristotélica parte del supuesto de que los procesos cognitivos reproducen lo que ocurre en la realidad objetiva, o sea, que las cosas extramentales existen tal como son pensadas por la mente humana. El ser humano internaliza el conocimiento a partir de las cosas que observa y experimenta, bajo esta perspectiva se desarrolló la matemática griega.
En matemática existen dos elementos básicos en su estructura, los conceptos y el método axiomático formal. El concepto constituye el primer nivel del pensamiento matemático en su forma lógica, con ello reflejamos las cualidades genéricas y esenciales de los objetos y fenómenos de la realidad. En matemática, los objetos son mentales; y los matemáticos crean o inventan sus propios objetos de estudio.
Por ejemplo, el concepto de número natural nace de la coordinación del conjunto de objetos materiales, tales como los dedos de las manos, las piedras para contar el número de ovejas de un rebaño, etc., donde la propiedad genérica reflejada mentalmente es la cantidad de los objetos, los números naturales solo existen a nivel conceptual en la mente humana, no son susceptibles de ser percibidos por nuestros sentidos. Esto indica que ningún ser humano puede ver, oler o tocar algún número natural; además, estos objetos matemáticos creados cognitivamente no interactúan con los seres humanos. A menudo, los conceptos matemáticos se relacionan o encadenan con otros conceptos más elementales.
Para los conceptos más elaborados, por ejemplo, el concepto de número par o impar, igualdad, etc.,se tiene un mecanismo que nos permite precisar este concepto, describiendo de manera lógica y sin ambigüedades las propiedades o relaciones que tienen los objetos, este mecanismo es llamado definición. Una definición matemática es una descripción precisa de las características esenciales de los objetos y fenómenos y abarca un concepto y muestra sus relaciones con otros conceptos más generales.
El edificio matemático que se va construyendo a partir de estos conceptos (definibles o no) y a través de afirmaciones evidentes que los griegos llamaron postulados o axiomas; por ejemplo, dos puntos determinan una recta, para luego pasar a construir el conocimiento matemático con afirmaciones que necesitan una deducción lógicamente rigurosa (demostraciones) para ser aceptadas, los griegos las llamaron teoremas, lemas, corolarios, etc., según el grado de importancia que tenían.
En la actualidad, un sistema axiomático formal lo constituyen términos primitivos (no definibles), axiomas (preestablecidos) y deducciones (teoremas) sujetos a reglas de inferencia. Actualmente existen distintos sistemas axiomáticos formales que fundamentan casi toda la matemática inventada por el ser humano; sin embargo, el sistema de Zermelo-Franklin es hoy en día el más aceptado. Ver el libro Una axiomatización de la teoría de conjuntos escrito por Esptiben Rojas, en el que se hace un estudio detallado de tal sistema.
En todas las ramas de la Física, la Química, la Biología y, en general, en todas las disciplinas científicas y aún en las humanidades y ciencias sociales se trata de establecer una sistematización, consistente en un encadenamiento y ordenación lógica de los conceptos y proposiciones que las constituyen, de manera que una proposición o concepto posterior esté lógicamente fundamentado en las anteriores; en esta ordenación hay un grupo primario de proposiciones y conceptos. Lo anterior nos indica que estas disciplinas tratan de estructurarse conforme al método axiomático formal o, en otras palabras, tienden a matematizarse, revelando indiscutiblemente la potencia e importancia de la matemática para el desarrollo del conocimiento humano. Un sistema de axiomas debe tener tres características esenciales: compatibilidad, independencia y completitud (idealmente).
Muchas de las enfermedades “del mundo moderno” (cáncer, diabetes, hipertensión, asma, demencia) son producto de los “malos hábitos” alimenticios y falta de ejercicio.
Pero los métodos subjetivos de conocimiento de la historia como el de comprender (o “verstehen”) no resuelven el problema de la objetividad.
Existe una gran variedad de patrones que "evocan sensaciones dinámicas conscientes de movimiento ilusorio, a pesar de ser estático", explicaron los especialistas en su más reciente estudio.
Los especialistas indican que en todo el país se detectan alrededor de 195 mil casos de cáncer al año, los cuales tienen una tasa de mortalidad del 46%.
Dado que los nutrientes de una selva están inmovilizados en la densa vegetación, el suelo es poco fértil y no es adecuado para desarrollar actividades agropecuarias. Al talar los árboles, los nutrientes se van en los troncos y no retornan al suelo.
Este filme aborda la vida de la científica marina Sophia (Berenice Bejo), quien se dedica a estudiar el comportamiento de la especie más depredadora de los océanos: el tiburón blanco.
Todos los avances de la humanidad tendrán que dejar de ser coágulos de trabajo con plusvalía contenida y tendrán que pasar a ser simplemente bienes y servicios.
Su domesticación ha traído casi cien variedades de esta especie, dentro de las que se pueden encontrar plantas con las típicas hojas color verde y escarlata.
La humanidad debe ser capaz de evitar cualquier desastre que extinga la vida en la Tierra.
Tiene como objetivo ampliar la compresión del universo y contará con uno de los espejos más avanzados jamás creados.
Si existen o no está sujeto a lo que concebimos como realidad, misma que es relativa, existe una realidad capturada por nuestros sentidos y una realidad inventada que sólo existe conceptualmente en la mente humana.
La vida de Mendel es un ejemplo clásico de perseverancia. Aunque al principio sus observaciones no tuvieron relevancia para la comunidad científica, biólogos y botánicos llegaron a sus mismas conclusiones décadas después de su muerte.
El Centro Nacional de Investigaciones Científicas (CNRS) francés sostuvo que en plena selva amazónica descubrió una “extensa red de ciudades de dos mil 500 años de antigüedad”.
Si te gustan las matemáticas y te interesa conocer qué características debe tener un sistema de axiomas, aquí te detallo. Son tres: compatibilidad, independencia y completitud (idealmente).
El Meteorito de Allende abrió “una ventana para entender el origen del Sistema Solar” y junto a otro célebre meteorito “mexicano” de hace 66 millones de años en el área submarina de Chicxulub, ha aportado importantes conocimientos científicos sobre la historia de la Tierra.
Ley Censura de la 4T: acallar las voces críticas y la libertad de expresión
Campesinos piden apoyos compensatorios ante pérdidas por sequía en Sinaloa
Cae 42% recursos federales para salud en estados
Persiste desigualdad salarial entre docentes
Megamarcha de la CNTE afectará vialidades clave en CDMX este 15 de mayo
China fortalece lazos con América Latina
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador