Cargando, por favor espere...
Una demostración matemática es un conjunto de procedimientos o argumentaciones lógicas que permiten establecer fehacientemente la veracidad de las afirmaciones matemáticas.
Un sistema de axiomas debe tener tres características esenciales: compatibilidad, independencia y completitud (idealmente).
1. Compatibilidad de los axiomas
Se dice que un sistema de axiomas es compatible cuando se ha probado que, operando lógicamente con ellos, no es posible llegar a demostrar que dos proposiciones contradictorias sean verdaderas. El problema de la compatibilidad o de la no contradicción de un sistema de axiomas es el problema lógico por excelencia, pues la existencia de una contradicción en una teoría la invalida completamente.
Para los formalistas (Hilbert y su escuela) la compatibilidad tiene un contenido fundamental, basta haberla demostrado para un sistema de axiomas para poder afirmar la existencia de los objetos matemáticos que el sistema de axiomas define, es decir, ser compatible y existir son para ellos sinónimos. Por ejemplo, basta definir rigurosamente el concepto de número natural, de acuerdo a un sistema de axiomas para que exista.
El problema de la compatibilidad ha sido atacado con pleno éxito en casi todas las teorías matemáticas; así, por ejemplo, Hilbert demuestra, de una manera acabada, la no contradicción de la geometría aceptando la no contradicción de la teoría de los números reales; la aritmetización del análisis reduce también su no contradicción a la de los números reales; la no contradicción de éstos se reduce a su vez a la de los números naturales y de la teoría de conjuntos, disciplina que desempeña por esto un papel central en la matemática.
2. Independencia de un sistema de axiomas
Un sistema axiomático, con los siguientes axiomas A1, A2, ...An, es llamado independiente cuando se demuestra la imposibilidad de qué uno de estos axiomas pueda ser demostrado usando los axiomas restantes. Por ejemplo, en la Geometría Euclidiana no es posible demostrar el Axioma V (Postulado de las Paralelas), usando los Axiomas I, II, III, IV.
Para probar la independencia de uno de los axiomas, por ejemplo, A1, basta probar que es compatible el sistema formado por los demás axiomas y la negación de A1, puesto que, si esto se demostrara, resultaría que A1 no puede ser deducido de los otros, ya que al mismo tiempo se aceptaría su negación. Para efectuar esto se construyen disciplinas artificiales compatibles, las cuales son modelos que satisfacen estos sistemas de axiomas.
La historia de la matemática nos da un notable ejemplo que prueba la importancia del concepto de independencia de los sistemas de acción más: durante más de 20 siglos, los matemáticos se esforzaron infructuosamente en demostrar el Axioma V de Euclides, o Postulado de las Paralelas, hasta que Gauss, Lobachevski, Bolyai y Riemann plantearon y resolvieron el problema de la independencia de este postulado, creando las geometrías no euclidianas, las cuales contienen los mismos postulados de la Geometría Euclidiana, excepto el V, que se reemplaza por su negación, generando un nuevo sistema axiomático.
3. Saturación o completitud de un sistema de axiomas
Esta característica de un sistema axiomático, responde a la siguiente pregunta: ¿En una teoría matemática, toda proposición formulada en los términos de la teoría es necesaria mente demostrable o refutable?
Para un sistema de axiomas saturado o completo en el sentido anteriormente indicado, la respuesta es afirmativa; es decir, si existiera una proposición que no fuera demostrable ni refutable podría ser tomada como axioma independiente. Para nuestra sorpresa, Kurt Gödel demostró, en 1948, que no existen sistemas axiomáticos completos, para ver detalles de este controvertido resultado y sus alcances vea Una axiomatización de la teoría de conjuntos, de Esptiben Rojas.
“Prohibir el fentanilo en la práctica es quitarle a los enfermos el derecho a vivir sin dolor, es retroceder varios años en la historia”, sostuvieron médicos y científicos ante la propuesta de AMLO de prohibir el fentanilo en la medicina.
Los trabajos que pueden contribuir a un incremento en el riesgo de sufrir demencia destacan los que están relacionados con funciones mecánicas o procesos automatizados.
El sistema CRISPR/Cas9 es considerado como el método más simple, versátil y preciso de manipulación genética.
Otra de las ventajas del cultivo in vitro es que le permite al hombre controlar la humedad, la temperatura y la luz, factores decisivos para el crecimiento de una planta, que, de manera natural, no pueden ser controlados.
Si te has identificado con las personas que aman el terror, te contaré una historia de hechos reales que te pondrá los pelos de punta. Ésta es una historia sobre seres vivos que vuelven zombis a sus víctimas.
Para la antigua cultura griega, los números naturales podían tener dos realizaciones, una como elemento de medición (lo llamaban magnitud) y otra como elemento de conteo.
En nuestro país, el uso indiscriminado de fertilizantes químicos en la actividad agrícola se ha vuelto muy importante debido al empobrecimiento de los suelos.
Por muy abstracto que se vuelva el razonamiento matemático procede de la realidad material y tarde o temprano vuelve a ella.
El concepto tiempo asocia a los tres componentes estructurales del universo: materia, movimiento y espacio.
En matemática, los pitagóricos demostraron que: la suma de las medidas de los ángulos interiores de un triángulo es 180°.
El desarrollo de la investigación matemática ha sido tan espectacular, que abarcar todo el conocimiento actual de la matemática se ha vuelto imposible para cualquier ser humano.
Los problemas personales no afectaron su brillante carrera académica; su jornada incluía largas horas de concentración.
Astrónomos encontraron señal de vida en lo alto de la atmósfera de Venus: indicios que puede haber extraños microbios viviendo en las nubes cargadas de ácido sulfúrico.
En las ideas de Anaximandro no estaban presentes ideas esenciales de la ciencia moderna.
Hablar de la existencia de la realidad ha sido un problema filosófico muy discutido. En este contexto, qué tipo de realidad es un objeto matemático, es una pregunta que abordaremos en este artículo.
Sigue cerrada la autopista México-Querétaro
Congreso de la CDMX pide investigar permisos de construcción de Sandra Cuevas
Denuncia Coordinadora Territorial del Pueblo de Mixquic acoso y violencia política
Continúa cerrada circulación de autopista México-Querétaro por accidente
Sheinbaum en el G20 y el camino que México debe seguir
Una lección de Walter Benjamin. Una crítica al progreso
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador