Cargando, por favor espere...
Una demostración matemática es un conjunto de procedimientos o argumentaciones lógicas que permiten establecer fehacientemente la veracidad de las afirmaciones matemáticas.
Un sistema de axiomas debe tener tres características esenciales: compatibilidad, independencia y completitud (idealmente).
1. Compatibilidad de los axiomas
Se dice que un sistema de axiomas es compatible cuando se ha probado que, operando lógicamente con ellos, no es posible llegar a demostrar que dos proposiciones contradictorias sean verdaderas. El problema de la compatibilidad o de la no contradicción de un sistema de axiomas es el problema lógico por excelencia, pues la existencia de una contradicción en una teoría la invalida completamente.
Para los formalistas (Hilbert y su escuela) la compatibilidad tiene un contenido fundamental, basta haberla demostrado para un sistema de axiomas para poder afirmar la existencia de los objetos matemáticos que el sistema de axiomas define, es decir, ser compatible y existir son para ellos sinónimos. Por ejemplo, basta definir rigurosamente el concepto de número natural, de acuerdo a un sistema de axiomas para que exista.
El problema de la compatibilidad ha sido atacado con pleno éxito en casi todas las teorías matemáticas; así, por ejemplo, Hilbert demuestra, de una manera acabada, la no contradicción de la geometría aceptando la no contradicción de la teoría de los números reales; la aritmetización del análisis reduce también su no contradicción a la de los números reales; la no contradicción de éstos se reduce a su vez a la de los números naturales y de la teoría de conjuntos, disciplina que desempeña por esto un papel central en la matemática.
2. Independencia de un sistema de axiomas
Un sistema axiomático, con los siguientes axiomas A1, A2, ...An, es llamado independiente cuando se demuestra la imposibilidad de qué uno de estos axiomas pueda ser demostrado usando los axiomas restantes. Por ejemplo, en la Geometría Euclidiana no es posible demostrar el Axioma V (Postulado de las Paralelas), usando los Axiomas I, II, III, IV.
Para probar la independencia de uno de los axiomas, por ejemplo, A1, basta probar que es compatible el sistema formado por los demás axiomas y la negación de A1, puesto que, si esto se demostrara, resultaría que A1 no puede ser deducido de los otros, ya que al mismo tiempo se aceptaría su negación. Para efectuar esto se construyen disciplinas artificiales compatibles, las cuales son modelos que satisfacen estos sistemas de axiomas.
La historia de la matemática nos da un notable ejemplo que prueba la importancia del concepto de independencia de los sistemas de acción más: durante más de 20 siglos, los matemáticos se esforzaron infructuosamente en demostrar el Axioma V de Euclides, o Postulado de las Paralelas, hasta que Gauss, Lobachevski, Bolyai y Riemann plantearon y resolvieron el problema de la independencia de este postulado, creando las geometrías no euclidianas, las cuales contienen los mismos postulados de la Geometría Euclidiana, excepto el V, que se reemplaza por su negación, generando un nuevo sistema axiomático.
3. Saturación o completitud de un sistema de axiomas
Esta característica de un sistema axiomático, responde a la siguiente pregunta: ¿En una teoría matemática, toda proposición formulada en los términos de la teoría es necesaria mente demostrable o refutable?
Para un sistema de axiomas saturado o completo en el sentido anteriormente indicado, la respuesta es afirmativa; es decir, si existiera una proposición que no fuera demostrable ni refutable podría ser tomada como axioma independiente. Para nuestra sorpresa, Kurt Gödel demostró, en 1948, que no existen sistemas axiomáticos completos, para ver detalles de este controvertido resultado y sus alcances vea Una axiomatización de la teoría de conjuntos, de Esptiben Rojas.
De acuerdo con las asociaciones opositoras, se trata de una ley centralista en tanto no garantiza el derecho a una participación ciudadana autónoma.
Toda investigación no es necesariamente científica, a veces se confunde con investigación tecnológica, o peor, con informes técnicos. Aclararemos estas confusiones en este artículo.
Pareciera contraintuitivo que alguien haga su vida al lado de grandes montañas que sacan humo y fuego, sin embargo, ese material que sacan por sus chimeneas hace que los suelos que los rodean sean fértiles...
Este libro compila los estudios que 11 psicólogos, sociólogos y antropólogos dedicaron al fenómeno de la comunicación de masas en Estados Unidos.
El aumento quizá se deba, dicen los científicos, al aumento de la temperatura de la superficie del mar en el mundo, que ha aumentado drásticamente en las últimas décadas como consecuencia de la quema de combustibles fósiles.
Investigadores del Instituto Tecnológico de Massachusetts demostraron la existencia de una "red lingüística universal" en hablantes de 45 lenguas, un hallazgo que podría revelar los procesos cognitivos base de todo el lenguaje hablado.
El mundo generó más electricidad a partir de combustibles fósiles en 2020 que en 2015, año en que 190 países firmaron el Acuerdo de París y se comprometieron a reducir la emisión de gases de efecto invernadero.
El papel de la ciencia en el desarrollo social se piensa en sus aportaciones a la tecnología para elevar la productividad, generar riqueza, crecimiento económico y progreso.
El volcán Popocatépetl se formó hace 23 mil años sobre los restos de otros volcanes. Desde entonces presenta actividad de manera intermitente, Tras estar inactivo 67 años, "despertó" en 1994.
Al igual que todos los virus de ARN, los coronavirus tienden a mutar de manera muy frecuente.
Este fenómeno se encuentra en el movimiento de los mares, en los chorros que salen de un grifo con suficiente velocidad.
El Cometa Diablo, compuesto de criomagma, una amalgama de hielo, polvo y gas, presenta una estructura peculiar.
Descartes, fundamentalmente era un filósofo racionalista, llegó a escribir otras obras importantes, en 1641 escribió Meditaciones de Filosofía.
El telescopio espacial Hubble descubrió la estrella más lejana hasta la fecha, una gigante supercaliente y superbrillante formada hace casi 13 mil millones de años.
Durante el gobierno de Napoleón, Francia vivió una época brillante para la ciencia, se hablaba del Imperio de las Ciencias.
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador