Cargando, por favor espere...

Cavalieri y la importancia de su obra
Sirva de ejemplo la vida de Bonaventura Francesco Cavalieri para que los jóvenes mexicanos decidan estudiar matemáticas y comprendan que es útil en la resolución de problemas reales.
Cargando...

El nombre de Bonaventura Francesco Cavalieri (1598–1647) es desconocido por los estudiantes mexicanos de nivel básico, medio superior y superior, debido a que los profesores de matemáticas no difunden la historia de esta ciencia exacta. La mayoría de estos centran su atención en la resolución de ejercicios matemáticos mediante el uso de diferentes métodos de demostración, e ignoran el origen, el desarrollo, la importancia y la utilidad de las matemáticas en el desarrollo de la sociedad.

Éste es precisamente uno de los motivos que me obliga a resumir la biografía del precursor del análisis matemático. Los principios y métodos que él propuso cimentaron el cálculo diferencial e integral, y contribuyeron con éxito a resolver problemas astronómicos, geográficos y de navegación, y los relacionados con el cálculo de áreas de terrenos accidentados y volúmenes de cuerpos irregulares.

La inclinación de Cavalieri hacia las matemáticas comenzó a muy temprana edad. En ello contribuyeron su familia y los eminentes maestros que tuvo. Sus progenitores pertenecieron a la nobleza, lo cual influyó para que recibiera una excelente formación humanista; asimilara los elementos cognoscitivos indispensables para comprender mejor el mundo; afinara su sensibilidad, sus cualidades morales y estéticas y desarrollara un pensamiento crítico sobresaliente.

A la edad de 15 años el joven  italiano se unió a la Orden de los Jesuitas; un año después se mudó a Pisa donde continuó su educación espiritual con la tutoría del matemático y astrónomo Benedict Castelli, discípulo del científico más notable de aquella época: Galileo Galilei. Estos dos maestros de la ciencia le despertaron el gusto por la geometría y por la matemática en general. Comenzó a estudiar las obras de Euclides, Eudoxo, Arquímedes, Apolonio y otros matemáticos antiguos. Sin embargo, su interés por las matemáticas aumentó cuando conoció al genio Galileo Galilei, de quien tuvo oportunidad de recibir clases personales.

En 1619, a los 21 años, ya había adquirido una formación matemática muy sólida, esto lo animó a enviar una solicitud de empleo al Departamento de Matemáticas de la prestigiada Universidad de Bolonia. Pero no resultó seleccionado. Regresó a su ciudad natal; luego se fue a vivir a Florencia, Roma y Parma. En Roma conoció a Giovanni Ciampoli, un amante de las ciencias exactas y admirador de Galileo. Rápidamente se hicieron amigos y cultivaron una amistad cultural y científica como lo deja ver Cavalieri al dedicarle su obra fundamental Una nueva forma de desarrollar la geometría usando el continuo indivisible, escrita en 1635. 

En 1629, diez años después, Cavalieri convertido ya en un señor de las ciencias, se aplicó de nueva cuenta para competir por un puesto en la Universidad de Bolonia, pero ahora en el área de la astronomía. Su candidatura fue apoyada esta vez por Galileo y Castelli y fue aceptado como profesor de tiempo completo del Departamento de Astronomía, puesto que ocupó hasta su muerte.

A partir de entonces el matemático italiano comenzó a escribir y publicar varias obras que trascendieron. En 1632, por ejemplo, escribió Una guía universal para medir el cielo, en la que se explican los conceptos básicos y las reglas de acción de la trigonometría logarítmica y creó las tablas de logaritmos de funciones trigonométricas de hasta 11 dígitos; en 1639 publicó Cien problemas diferentes para demostrar la utilidad y facilidad del uso de los logaritmos en la trigonometría, astronomía y geografía; en 1643 editó Geometría plana, esférica y logarítmica,  cuyos conocimientos se siguen impartiendo en las mejores escuelas del mundo; en 1647, en respuesta al matemático y astrónomo suizo Paul Guldin, quien lo criticó fuertemente en su obra Geometría de lo indivisible continuo, escribió Seis bosquejos geométricos, en los que establece y perfecciona su teoría de los indivisibles y da por zanjada la discusión.

A pesar de la enfermedad de la gota que padecía, Cavalieri nunca detuvo su investigación científica, pero aquélla fue desarrollándose paulatinamente; y el 30 de noviembre de 1647, lo atacó y lo obligó a dejar de respirar cuando apenas tenía 49 años. Sirva de ejemplo la vida de Bonaventura Francesco Cavalieri para que los jóvenes mexicanos decidan estudiar matemáticas y comprendan que es útil en la resolución de problemas reales.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

Las buenas noticias disparadas desde Palacio Nacional, que pintan a un México próspero y “feliz”, parecen no corresponderse con las estadísticas del INEGI.

Alrededor de 20 especies de ciempiés podrían ser clave en el desarrollo de nuevos tratamientos médicos.

Heine logró demostrar que si una serie trigonométrica converge a una función continua en un intervalo dado, entonces la serie es única.

Las aves han desempeñado varios papeles fundamentales a lo largo de la historia humana, desde ser fuente crucial en los ecosistemas, hasta servir como objeto de tranquilidad a la cansada y ajetreada alma de los trabajadores.

“(La sesión) fue aplazada en aras de garantizar el estricto apego a las disposiciones normativas relativas al proceso de notificación”, se lee en el comunicado.

Este fenómeno tiene graves consecuencias para el medio ambiente. Elimina la capa de protección de las plantas, dejándolas desprotegidas a la acción del viento, el frío, la sequía y convirtiéndolas en presa fácil de los parásitos o plagas, que provocan su muerte.

La investigación de Legendre se caracterizó por materializarse en la publicación de libros importantes para la enseñanza, entre las que destacan Elementos de geometría (1794) y Ensayos sobre la teoría de números (1798).

El sustento del conocimiento matemático se desarrolló en la antigua Grecia; uno de los filósofos que contribuyó a su desarrollo fue Aristóteles, quien planteó las leyes básicas del pensamiento humano a fin de obtener deducciones válidas.

"Durante esta administración empezamos muy mal desde que se decía que los científicos éramos la mafia. Todos los apoyos, hubo una reducción clara", afirmó el investigador Alfredo Herrera Estrella.

La empresa Tesla, del multimillonario Elon Musk, pretende fabricar nuevas instalaciones en tres estados de la República Mexicana.

El acceso a las vacunas “es uno de los retos definitorios de la pandemia”, afirmó el máximo responsable de la agencia de salud de Naciones Unidas.

La naturaleza es compleja y se manifiesta de muchas formas. Uno de los instrumentos para estudiar dichas formas es la geometría

Este explorador, pionero en su tipo, saltará de áreas iluminadas por el sol a cráteres en sombra para realizar análisis detallados.

Leonard Euler aún de avanzada edad y ciego, continuó su producción a un ritmo acelerado; en 1770 publica otra de sus obras más sobresalientes Introducción al álgebra, pedagógicamente impecable.

El famoso Axioma de elección juega un poco con la intuición humana, ya que demuestra que todo conjunto puede ser bien ordenado, aunque no se muestra cuál es ese orden.