Cargando, por favor espere...
La familia Bernoulli es muy conocida en la comunidad científica, ya que muchos de ellos hicieron contribuciones significativas al campo de la física, de las matemáticas, de la hidráulica, etc. Sus nombres están asociados con ecuaciones, fórmulas e identidades como la ecuación de Bernoulli relacionada con la conservación de la energía para el flujo de fluidos, número de Bernoulli, polinomios de Bernoulli, técnica de la diferenciación parcial, ecuaciones diferenciales de Bernoulli, curvas trascendentales e isoperimetría, la espiral logarítmica, teorema de Bernoulli, ley de los grandes números, etc.
Los hermanos Jacob, Nicolaus y Johann Bernoulli, y el hijo de éste, Daniel Bernoulli, labraron el terreno de la física y las matemáticas generando con ello grandes aportaciones a la ciencia. Toca, en esa ocasión, rendir honores a Jacob, quien nació el 27 de diciembre de 1654, en la ciudad de Basilea, Suiza, considerada cuna de los matemáticos, pues ahí nació también Leonhard Euler, uno de los más prolíficos en las ciencias matemáticas.
Jacob comenzó estudiando teología en la universidad de Basilea por consejos de su padre, pero le pareció mucho más interesante resolver ecuaciones y encontrar variables desconocidas en las desigualdades. Fue así que decidió estudiar las matemáticas. Dominó no solamente estas ciencias exactas, sino también la física, la probabilidad y estadística, y cinco lenguas extranjeras: italiano, francés, griego, latín e inglés.
En 1671, al terminar su educación superior, viajó a Europa durante cuatro años. En Francia se familiarizó con la ciencia creada por René Descartes (1596–1650), luego fue a Italia y regresó a su tierra natal, donde impartió clases privadas. A partir de 1677, comenzó a guardar sus notas, producto de sus ideas y observaciones de carácter científico.
Con cinco idiomas bajo el brazo, pudo adquirir con más facilidad la ciencia de su época. En 1682, visitó Holanda, seguido de Inglaterra, donde conoció al científico experimental inglés Robert Hooke (1635–1703), conocido por la ley de elasticidad de Hooke; al físico e inventor holandés Robert Boyle (1627–1691), conocido por la ley de Boyle; y al físico matemático holandés Christiaan Huygens, inventor del reloj del péndulo.
El intercambio científico con esos pensadores lo consolidó para ocupar el puesto de profesor de tiempo completo en la Universidad de Basilea. En 1683 comenzó a impartir física a estudiantes y tres años después fue nombrado profesor de física y matemáticas.
A partir de entonces, surgieron sus aportaciones más significativas: en 1687, al leer las primeras memorias sobre el cálculo infinitesimal del alemán Leibniz (1646–1716), adquirió las herramientas de la derivada e integral que lo ayudaron a resolver una ecuación diferencial que describía una parábola semicúbica. Este problema fue establecido por Leibniz y Huygens, pero Jacob fue quien le dio una demostración formal, en 1690.
Las aportaciones de Jacob, sin embargo, no quedaron ahí. Al plantear el problema de la curva plana lemniscate (curva en forma de infinito) y resolver el problema de la curva braquistócrona (curva del descenso más rápido), el genio suizo contribuyó al origen del cálculo de variaciones. Investigó, además,la cicloide y la espiral logarítmica, a tal grado que pidió que en su tumba se le grabara aquella espiral.
El matemático suizo hizo también aportaciones relevantes a la teoría de series, particularmente sus famosos polinomios y números de Bernoulli. De la lectura del libro de Huygens, On Calculations in a Gambling, introdujo varios conceptos modernos a la teoría de la probabilidad y formuló la ley de los grandes números, muy usada en la probabilidad de hoy. De ese estudio preparó una monografía, que fue publicada póstumamente, en 1713, por su hermano Nicolaus y titulado El arte de los supuestos. Esta obra es un tratado sobre la teoría de la probabilidad, las estadísticas y su aplicación práctica. Ahí aparece la primera versión de su distribución, conocida como distribución combinatoria de Bernoulli.
En sus otros cuadernos científicos se pueden encontrar notas acerca de los experimentos sobre la determinación del centro de oscilación en los cuerpos y la resistencia de los cuerpos en diversas formas que se mueven como un líquido.
Como el lector puede notar, las ecuaciones y fórmulas proporcionadas por Jacob Bernoulli son obtenidas a partir del análisis de un problema concreto y real, problema que es descrito a través de la ecuación diferencial, de la distribución combinatoria de Bernoulli, etc. Aquí se demuestra una vez más que las matemáticas, por muy abstractas que sean, tienen una base real.
¿Por qué algunas personas pueden comprender más fácil el formalismo matemático? ¿Por qué les fluyen ideas matemáticas con mayor facilidad que a otras? Esta increíble mente perteneció a uno de los más enigmáticos en la Historia de la Matemática.
Ayer, el Telescopio Espacial James Webb reveló la imagen más clara hasta la fecha del universo primitivo, que se remonta a 13 mil millones de años, dijo la NASA el lunes.
La pobreza y la marginación social son la principal causa del incremento de enfermedades relacionadas con la nutrición.
Es posible crear una matemática filosófica desde el hacer de un matemático que sea realmente relevante y visionaria. Debe de ser una reflexión humanizante, pero a la vez esclarecedora del mundo de las ideas formales.
Esta herramienta prescinde de las cuerdas vocales y restaura el habla ofreciendo esperanza para pacientes con trastornos de la voz.
A pesar de todas las riquezas que posee África (y que aquí menciono), la gran mayoría de la población vive una situación muy deplorable, lo que representa una gran contradicción.
Al igual que todos los virus de ARN, los coronavirus tienden a mutar de manera muy frecuente.
Los modos del pensamiento matemático influyen en su hacer, el Siglo XX ha sido testigo de al menos dos formas de este hacer, con marcada influencia ideológica.
Tal como los procesadores de texto cambiaron la forma es la que se escribía, ahora estamos ante una nueva herramienta que, si se usa de manera correcta, revolucionaría la forma en la que escribimos.
A pesar de ser matemático, nunca estuvo interesado en los temas de moda de la época (física-matemática), tampoco en la geometría. Fue, por varias razones, único en la historia de la matemática.
La cerveza se utilizaba como ofrenda a los dioses en casi todas las culturas de Europa, el Medio Oriente y Asia. En los países nórdicos (Dinamarca, Finlandia, Islandia, Noruega y Suecia) se ofrecía cerveza a Odín.
“El financiamiento es la columna vertebral de un sistema nacional de ciencia, tecnología e innovación. Desde aquí se aplican las políticas públicas, se incentiva o se corrige".
Investigadores analizaron 5 mil 853 alimentos y los clasificaron por su carga de enfermedades nutricionales. Tales alimentos van desde los 74 minutos de vida perdidos hasta 80 minutos ganados por ración.
Von Neumann fue considerado como superdotado, ya que desde los seis años ya sabía dividir, hablar griego antiguo, francés, alemán y latín, y a sus ocho años ya dominaba el cálculo diferencial e integral.
Fermat nunca publicó un artículo matemático, todos sus aportes eran mediante cartas personales, sin embargo sus conjeturas fueron importantes para el desarrollo matemático.
AXA demanda a México para evitar quiebra por conflicto fiscal
Cierran avenida Izazaga; comerciantes exigen a Ebrad que los deje trabajar
Alcalde de San Pedro Ixtlahuaca golpea a mujer indígena y se separa del cargo
De víctima a victimaria, Elena Ríos denuncia liberación ilegal de su agresor y luego golpea a mujer
Niegan medida cautelar a implicada en el atentado de Diana Sánchez Barrios
Por derroche, en Guanajuato suspenden Fideicomiso
Escrito por Romeo Pérez
Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.