Cargando, por favor espere...

Tlaixaxiliztli
Jacob Bernoulli, matemático fuera de serie
Las matemáticas, por muy abstractas que sean, tienen una base real.


La familia Bernoulli es muy conocida en la comunidad científica, ya que muchos de ellos hicieron contribuciones significativas al campo de la física, de las matemáticas, de la hidráulica, etc. Sus nombres están asociados con ecuaciones, fórmulas e identidades como la ecuación de Bernoulli relacionada con la conservación de la energía para el flujo de fluidos, número de Bernoulli, polinomios de Bernoulli, técnica de la diferenciación parcial, ecuaciones diferenciales de Bernoulli, curvas trascendentales e isoperimetría, la espiral logarítmica, teorema de Bernoulli, ley de los grandes números, etc.

Los hermanos Jacob, Nicolaus y Johann Bernoulli, y el hijo de éste, Daniel Bernoulli, labraron el terreno de la física y las matemáticas generando con ello grandes aportaciones a la ciencia. Toca, en esa ocasión, rendir honores a Jacob, quien nació el 27 de diciembre de 1654, en la ciudad de Basilea, Suiza, considerada cuna de los matemáticos, pues ahí nació también Leonhard Euler, uno de los más prolíficos en las ciencias matemáticas.

Jacob comenzó estudiando teología en la universidad de Basilea por consejos de su padre, pero le pareció mucho más interesante resolver ecuaciones y encontrar variables desconocidas en las desigualdades. Fue así que decidió estudiar las matemáticas. Dominó no solamente estas ciencias exactas, sino también la física, la probabilidad y estadística, y cinco lenguas extranjeras: italiano, francés, griego, latín e inglés.

En 1671, al terminar su educación superior, viajó a Europa durante cuatro años. En Francia se familiarizó con la ciencia creada por René Descartes (1596–1650), luego fue a Italia y regresó a su tierra natal, donde impartió clases privadas. A partir de 1677, comenzó a guardar sus notas, producto de sus ideas y observaciones de carácter científico.

Con cinco idiomas bajo el brazo, pudo adquirir con más facilidad la ciencia de su época. En 1682, visitó Holanda, seguido de Inglaterra, donde conoció al científico experimental inglés Robert Hooke (1635–1703), conocido por la ley de elasticidad de Hooke; al físico e inventor holandés Robert Boyle (1627–1691), conocido por la ley de Boyle; y al físico matemático holandés Christiaan Huygens, inventor del reloj del péndulo. 

El intercambio científico con esos pensadores lo consolidó para ocupar el puesto de profesor de tiempo completo en la Universidad de Basilea. En 1683 comenzó a impartir física a estudiantes y tres años después fue nombrado profesor de física y matemáticas.

A partir de entonces, surgieron sus aportaciones más significativas:  en 1687, al leer las primeras memorias sobre el cálculo infinitesimal del alemán Leibniz (1646–1716), adquirió las herramientas de la derivada e integral que lo ayudaron a resolver una ecuación diferencial que describía una parábola semicúbica. Este problema fue establecido por Leibniz y Huygens, pero Jacob fue quien le dio una demostración formal, en 1690.

Las aportaciones de Jacob, sin embargo, no quedaron ahí. Al plantear el problema de la curva plana lemniscate (curva en forma de infinito) y resolver el problema de la curva braquistócrona (curva del descenso más rápido), el genio suizo contribuyó al origen del cálculo de variaciones. Investigó, además,la cicloide y la espiral logarítmica, a tal grado que pidió que en su tumba se le grabara aquella espiral.

El matemático suizo hizo también aportaciones relevantes a la teoría de series, particularmente sus famosos polinomios y números de Bernoulli. De la lectura del libro de Huygens, On Calculations in a Gambling, introdujo varios conceptos modernos a la teoría de la probabilidad y formuló la ley de los grandes números, muy usada en la probabilidad de hoy. De ese estudio preparó una monografía, que fue publicada póstumamente, en 1713, por su hermano Nicolaus y titulado El arte de los supuestos. Esta obra es un tratado sobre la teoría de la probabilidad, las estadísticas y su aplicación práctica. Ahí aparece la primera versión de su distribución, conocida como distribución combinatoria de Bernoulli.

En sus otros cuadernos científicos se pueden encontrar notas acerca de los experimentos sobre la determinación del centro de oscilación en los cuerpos y la resistencia de los cuerpos en diversas formas que se mueven como un líquido.

Como el lector puede notar, las ecuaciones y fórmulas proporcionadas por Jacob Bernoulli son obtenidas a partir del análisis de un problema concreto y real, problema que es descrito a través de la ecuación diferencial, de la distribución combinatoria de Bernoulli, etc. Aquí se demuestra una vez más que las matemáticas, por muy abstractas que sean, tienen una base real.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

sextante.jpg

El dilema de las redes sociales aborda el hecho de cómo el producto que las compañías “procesan” para lograr la obtención de fabulosas ganancias somos los mismos seres humanos.

cien.jpg

Las guerras biológicas permiten combatir a los enemigos sin confrontarse físicamente y han sido practicadas a lo largo de la historia. Los primeros usos de agentes biológicos se remontan a tres mil 500 años.

Recibe ser humano primer riñón de cerdo modificado

Por primera vez en la historia, médicos trasplantaron un riñón genéticamente modificado de un cerdo para un ser humano vivo.

2023, el año más cálido de la historia

El récord del año más cálido pasó de 0.17 grados centígrados en 2016 a 14.98 grados centígrados en 2023.

ciclo.jpg

El aumento quizá se deba, dicen los científicos, al aumento de la temperatura de la superficie del mar en el mundo, que ha aumentado drásticamente en las últimas décadas como consecuencia de la quema de combustibles fósiles.

Cirujano chino realiza primera operación a distancia desde Roma hasta Beijing

Cabe destacar que el proceso fue vigilado por médicos presentes en el quirófano de Beijing para garantizar la seguridad en todo momento.

Medio ambiente: la víctima menos vista de los conflictos armados

A lo largo de la historia, las dos guerras mundiales han dado lugar a los mayores ecocidios.

romeo.jpg

La irracionalidad ayuda al hombre a comprender la continuidad y la discontinuidad de la materia.

tala.jpg

Si el país tuviera los medios para aprovechar sustentablemente su vegetación, podría cosechar el equivalente a 56 mil 126 millones de pesos.

¿Existirán los números reales en la realidad?

Si existen o no está sujeto a lo que concebimos como realidad, misma que es relativa, existe una realidad capturada por nuestros sentidos y una realidad inventada que sólo existe conceptualmente en la mente humana.

Sobre el nuevo materialismo

La superación de la que habla Marx no niega por completo lo anteriormente construido por la tradición, sino que lo integra y, en algunos casos, lo supone. Aquí lo explico.

iStock_000062461572_Large.jpg

Cuántas veces hemos tenido la duda de si tomar un medicamento alopático o un té para curar algún malestar o disminuir el síntoma de una enfermedad.

De la Colonia al capitalismo

Si los campesinos quieren mejorar sus condiciones se debe insistir en la tecnificación del campo mexicano, en la menor dependencia de países extranjeros, en la tecnificación agrícola y...

god.jpg

El profesor Godfrey Hardy fue muy famoso, entre otras aportaciones a la matemática, por su concepción ontológicamente neutra en la materia, que lo llevó a escribir uno de los textos más interesantes para entender el trabajo de un matemático.

plan.jpg

Científicos descubrieron en estos días un exoplaneta en órbita a una de las dos estrellas pequeñas de un sistema binario ubicado a unos 100 años luz de la Tierra.