Cargando, por favor espere...
Joseph Fourier (1738-1830) fue un matemático francés que vivió en la época napoleónica, de grandes cambios a favor de la ciencia. Su contribución más importante fue en la teoría matemática de difusión, en donde profundizó las series que llevan su apellido e inventó las transformadas de Fourier. Las series de Fourier fueron establecidas en los trabajos de Leonard Euler (1707-1783), Brook Taylor (1685-1731), Daniel Bernoulli (1700-1782), Jean D’Alembert (1717-1783), a principios del Siglo XIX, aún quedan las secuelas de la matemática poco rigurosa del Siglo XVIII.
Bajo estas deficiencias, Joseph Fourier hizo un planteamiento a la Academia de Ciencias de París, que fue publicado (en su versión más acabada) en 1822, como: Teoría de propagación del calor de los sólidos. Las críticas que recibió de matemáticos connotados como Lagrange, Laplace, Lacroix y Monge, hizo que no se publicara antes. A pesar de las críticas que recibió por la falta de rigor en sus afirmaciones, Fourier consideraba que toda función continua puede representarse como una serie infinita de senos y cosenos, en donde hacía cálculos de integrabilidad en series infinitas, sin mayor fundamento. Joseph Fourier no consideraba importante todo ello, para él lo más importante era que describiera o diera cuenta del fenómeno físico –en este caso, la propagación del calor–, tenía una visión utilitarista de la matemática y consideraba que ésta debería ponerse al servicio de resolver los problemas naturales y sociales. No vivió para ver que sus ideas serían esenciales para el desarrollo de la matemática moderna e incluso con proyecciones tecnológicas insospechadas en su época; por ejemplo, hoy la teoría de Fourier fundamenta la teoría de señales, la transmisión de sonido e imágenes, el desarrollo de la transformada de Fourier es muy importante en astrofísica. En este artículo describiremos brevemente la contribución de las ideas de Fourier que repercutieron en el desarrollo de la matemática moderna:
La escritura de una función como una serie trigonométrica infinita genera preguntas interesantes, por ejemplo, cuáles son los puntos en donde ésta converge; el mismo Fourier había trabajado con funciones con un número finito de discontinuidades. Fue George Cantor quien trabajó este problema en su tesis doctoral, para un número infinito de discontinuidades. Cantor concibió los conjuntos derivados, los puntos de acumulación y las ideas básicas de la topología conjuntista.
En 1829, a partir de su estudio de la convergencia de la serie de Fourier, Peter Dirichlet (1802-1856) demostró que la serie es convergente para una función continua y acotada y que los coeficientes de Fourier están bien definidos. A raíz de estos estudios, Dirichlet dio la primera definición de función similar a la de hoy día.
Bernhard Riemann (1826-1866) extendió la noción de integral, a fin de hacer plausible la representación en serie de una función, introdujo la derivada generalizada.
Condujo a la invención del concepto de convergencia uniforme, usado por Karl Weiertrass (1815-1897), para integrar término a término la serie de Fourier.
A fines del Siglo XIX se empezaron a estudiar las series divergentes.
Henry Lebesgue (1875-1941) inició, en 1902, su teoría de integración; inspirado en los trabajos de Fourier, inventó la integral de Lebesgue para recuperar la función original a partir de los coeficientes de Fourier.
En los primeros años del Siglo XX estudió los sistemas ortogonales (generalizando la idea de ortogonalidad de Fourier), que conducen a los espacios de Hilbert, iniciando el estudio de los espacios L2 como espacio natural para la convergencia de las series de Fourier. El estudio de las series de Fourier se profundizó en el Siglo XX, creándose la teoría moderna del análisis armónico.
Ha sido fuente de inspiración de trabajos sobre convergencia de series de grandes analistas como Henry Lebesgue (1875-1941), Frygies Riesz (1800-1956), Marcel Riesz (1886-1969), Andrei Kolgomorov (1903-1987), Nikolai Lusin (1883-1960), Antony Zygmund (1900 -1992), Lennart Carleson (1928- ), etc.
Es importante mencionar a la teoría de ondículas, cuyos orígenes están en las ideas de Fourier, como un punto de encuentro de físicos, ingenieros y matemáticos. Fue introducida por Yves Meyer en 1985, gracias a la interacción con el físico Alex Grossman y el ingeniero Jean Morlet.
En la ruleta los resultados son equiprobables, no hay predilección por ningún número o color.
El Premio Abel puede considerarse como el premio Nobel para matemáticos.
Irán saliendo fritos y refritos, intentonas que seguirán haciendo todo lo posible para manchar el pensamiento y obra del hueso duro de roer, pues la consigna es muy clara: impedir el retorno de Lenin.
Representan el primer florecimiento de la poesía pentasilábica en la tradición china. Se trata de la producción anónima de diversos literatos pertenecientes a la clase terrateniente media y baja.
La cinta que hoy comento, amable lector, es también una obra de arte con ese mismo sentido de denuncia hacia la ideología nazi-fascista y sus aplicaciones en el terreno práctico.
Los modos del pensamiento matemático influyen en su hacer, el Siglo XX ha sido testigo de al menos dos formas de este hacer, con marcada influencia ideológica.
“Nikolái Lenin, el líder ruso, es la figura revolucionaria que brilla más en el caos de las condiciones existentes en todo el mundo, porque se halla al frente de un movimiento que tiene que provocar ... la gran revolución mundial que ya está llamando a las puertas de todos los pueblos".
Hablando en términos marxistas, la religión fue una necesidad histórica.
Cuatro excavaciones efectuadas en enero han permitido recuperar los vestigios materiales de algunas páginas de la historia virreinal e independiente de lo que fuera el extremo sur de la ciudad potosina.
El Siglo XXI es de la comunicación matemática, espero que en el futuro se sumen una mayor cantidad de divulgadores y difusores del conocimiento matemático, así la contribución para nuestra sociedad será enorme, entre sus muchos beneficios, porque mejorará la educación ciudadana.
En las ideas de Anaximandro no estaban presentes ideas esenciales de la ciencia moderna.
La bacteria P. luminiscens actuó sobre las heridas de los soldados como un como un antibiótico muy eficaz, lo que explica por qué las heridas fluorescentes sanaban más rápido que las heridas sin la bacteria fluorescente. Seguramente, esta bacteria salvó la vida de varios soldados, ¿cómo pasó?
La matemática del Siglo XVIII se caracteriza por su falta de rigor, por carecer de un cuerpo teórico para hacer a las nuevas herramientas matemáticas más eficientes.
Esta biografía resalta los rasgos de carácter más sobresalientes del general Vicente Guerrero: su inquebrantable voluntad de lucha.
Empresarios y trabajadores han comenzado a abandonar el puerto de Acapulco, en Guerrero, tras un año del huracán "Otis".
Cierran avenida Izazaga; comerciantes exigen a Ebrad que los deje trabajar
Congreso de la CDMX recibe el PEF 2025; habrá aumentos a las 16 alcaldías
Por derroche, en Guanajuato suspenden Fideicomiso
No desparece en el Congreso de la CDMX la moción suspensiva
Aumentarán impuestos para gasolina, refresco y cigarros; IEPS
Policías se enfrentan a comerciantes en villa navideña
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador