Cargando, por favor espere...
Joseph Fourier (1738-1830) fue un matemático francés que vivió en la época napoleónica, de grandes cambios a favor de la ciencia. Su contribución más importante fue en la teoría matemática de difusión, en donde profundizó las series que llevan su apellido e inventó las transformadas de Fourier. Las series de Fourier fueron establecidas en los trabajos de Leonard Euler (1707-1783), Brook Taylor (1685-1731), Daniel Bernoulli (1700-1782), Jean D’Alembert (1717-1783), a principios del Siglo XIX, aún quedan las secuelas de la matemática poco rigurosa del Siglo XVIII.
Bajo estas deficiencias, Joseph Fourier hizo un planteamiento a la Academia de Ciencias de París, que fue publicado (en su versión más acabada) en 1822, como: Teoría de propagación del calor de los sólidos. Las críticas que recibió de matemáticos connotados como Lagrange, Laplace, Lacroix y Monge, hizo que no se publicara antes. A pesar de las críticas que recibió por la falta de rigor en sus afirmaciones, Fourier consideraba que toda función continua puede representarse como una serie infinita de senos y cosenos, en donde hacía cálculos de integrabilidad en series infinitas, sin mayor fundamento. Joseph Fourier no consideraba importante todo ello, para él lo más importante era que describiera o diera cuenta del fenómeno físico –en este caso, la propagación del calor–, tenía una visión utilitarista de la matemática y consideraba que ésta debería ponerse al servicio de resolver los problemas naturales y sociales. No vivió para ver que sus ideas serían esenciales para el desarrollo de la matemática moderna e incluso con proyecciones tecnológicas insospechadas en su época; por ejemplo, hoy la teoría de Fourier fundamenta la teoría de señales, la transmisión de sonido e imágenes, el desarrollo de la transformada de Fourier es muy importante en astrofísica. En este artículo describiremos brevemente la contribución de las ideas de Fourier que repercutieron en el desarrollo de la matemática moderna:
La escritura de una función como una serie trigonométrica infinita genera preguntas interesantes, por ejemplo, cuáles son los puntos en donde ésta converge; el mismo Fourier había trabajado con funciones con un número finito de discontinuidades. Fue George Cantor quien trabajó este problema en su tesis doctoral, para un número infinito de discontinuidades. Cantor concibió los conjuntos derivados, los puntos de acumulación y las ideas básicas de la topología conjuntista.
En 1829, a partir de su estudio de la convergencia de la serie de Fourier, Peter Dirichlet (1802-1856) demostró que la serie es convergente para una función continua y acotada y que los coeficientes de Fourier están bien definidos. A raíz de estos estudios, Dirichlet dio la primera definición de función similar a la de hoy día.
Bernhard Riemann (1826-1866) extendió la noción de integral, a fin de hacer plausible la representación en serie de una función, introdujo la derivada generalizada.
Condujo a la invención del concepto de convergencia uniforme, usado por Karl Weiertrass (1815-1897), para integrar término a término la serie de Fourier.
A fines del Siglo XIX se empezaron a estudiar las series divergentes.
Henry Lebesgue (1875-1941) inició, en 1902, su teoría de integración; inspirado en los trabajos de Fourier, inventó la integral de Lebesgue para recuperar la función original a partir de los coeficientes de Fourier.
En los primeros años del Siglo XX estudió los sistemas ortogonales (generalizando la idea de ortogonalidad de Fourier), que conducen a los espacios de Hilbert, iniciando el estudio de los espacios L2 como espacio natural para la convergencia de las series de Fourier. El estudio de las series de Fourier se profundizó en el Siglo XX, creándose la teoría moderna del análisis armónico.
Ha sido fuente de inspiración de trabajos sobre convergencia de series de grandes analistas como Henry Lebesgue (1875-1941), Frygies Riesz (1800-1956), Marcel Riesz (1886-1969), Andrei Kolgomorov (1903-1987), Nikolai Lusin (1883-1960), Antony Zygmund (1900 -1992), Lennart Carleson (1928- ), etc.
Es importante mencionar a la teoría de ondículas, cuyos orígenes están en las ideas de Fourier, como un punto de encuentro de físicos, ingenieros y matemáticos. Fue introducida por Yves Meyer en 1985, gracias a la interacción con el físico Alex Grossman y el ingeniero Jean Morlet.
En las cacerías de brujas de la Edad Media europea gran parte de las víctimas fueron personas de menores ingresos.
Este cerebro racional, con millones de conexiones neuronales, es también emocional, e ilógico.
Un matemático es un científico básico, su formación requiere muchos años de preparación académica.
La personalidad de Gottfried Leibniz, lo convertía en un brillante diplomático.
Empresarios y trabajadores han comenzado a abandonar el puerto de Acapulco, en Guerrero, tras un año del huracán "Otis".
El sijo es una forma poética tradicional originaria de Corea que se caracteriza por su enfoque en la expresión emocional y la captura de momentos fugaces.
Tal vez éste sea el año en que más se ha hablado de paz en Ucrania desde 2022.
Se trata de una abstracción analítica en la que debemos separar tres elementos, y en la que la palabra arte y sus derivaciones se embrollan unas contra otras.
Hannah Arendt (1906-1975), filósofa e historiadora alemana.
Albert Einstein es el físico más importante del Siglo XX, sus ideas profundas han revolucionado las bases de la física newtoniana, dejando estupefactos a los grandes físicos de su época.
La característica esencial en su trabajo era que no estaba interesado en resolver problemas sino en la comprensión conceptual profunda y completa de las estructuras que se van tejiendo en el intrincado mundo matemático.
La presencia del Cota moderno en Tomis causa mucho menos extrañeza que la provocada por Ovidio dos mil años antes.
Hemos olvidado lo que ha hecho Xavi, hemos olvidado que es el artífice del mejor Barcelona, el mejor jugador, según Pelé, que algo sabría de futbol. Definitivamente nos equivocamos al aceptar la marcha de Xavi.
La bacteria P. luminiscens actuó sobre las heridas de los soldados como un como un antibiótico muy eficaz, lo que explica por qué las heridas fluorescentes sanaban más rápido que las heridas sin la bacteria fluorescente. Seguramente, esta bacteria salvó la vida de varios soldados, ¿cómo pasó?
Esta biografía resalta los rasgos de carácter más sobresalientes del general Vicente Guerrero: su inquebrantable voluntad de lucha.
Comerciantes denuncian extorsión, robo y abuso de poder en Azcapotzalco
Sobrepeso y obesidad en educación básica alerta a SEP
Protesta de conductores de Uber y Didi en CDMX
He tenido que aplastar a mi bebé para ganar dinero: jornaleras denuncian exclusión y precariedad
Ambulantes se oponen a “modernización” de Cetrams en CDMX
Anuncia Metrobús cierre de estaciones por mantenimiento
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador