Cargando, por favor espere...

Fourier y su contribución a la matemática moderna
Fourier consideraba que toda función continua puede representarse como una serie infinita de senos y cosenos.
Cargando...

Joseph Fourier (1738-1830) fue un matemático francés que vivió en la época napoleónica, de grandes cambios a favor de la ciencia. Su contribución más importante fue en la teoría matemática de difusión, en donde profundizó las series que llevan su apellido e inventó las transformadas de Fourier. Las series de Fourier fueron establecidas en los trabajos de Leonard Euler (1707-1783), Brook Taylor (1685-1731), Daniel Bernoulli (1700-1782), Jean D’Alembert (1717-1783), a principios del Siglo XIX, aún quedan las secuelas de la matemática poco rigurosa del Siglo XVIII.

Bajo estas deficiencias, Joseph Fourier hizo un planteamiento a la Academia de Ciencias de París, que fue publicado (en su versión más acabada) en 1822, como: Teoría de propagación del calor de los sólidos. Las críticas que recibió de matemáticos connotados como Lagrange, Laplace, Lacroix y Monge, hizo que no se publicara antes. A pesar de las críticas que recibió por la falta de rigor en sus afirmaciones, Fourier consideraba que toda función continua puede representarse como una serie infinita de senos y cosenos, en donde hacía cálculos de integrabilidad en series infinitas, sin mayor fundamento. Joseph Fourier no consideraba importante todo ello, para él lo más importante era que describiera o diera cuenta del fenómeno físico –en este caso, la propagación del calor–, tenía una visión utilitarista de la matemática y consideraba que ésta debería ponerse al servicio de resolver los problemas naturales y sociales. No vivió para ver que sus ideas serían esenciales para el desarrollo de la matemática moderna e incluso con proyecciones tecnológicas insospechadas en su época; por ejemplo, hoy la teoría de Fourier fundamenta la teoría de señales, la transmisión de sonido e imágenes, el desarrollo de la transformada de Fourier es muy importante en astrofísica. En este artículo describiremos brevemente la contribución de las ideas de Fourier que repercutieron en el desarrollo de la matemática moderna:

La escritura de una función como una serie trigonométrica infinita genera preguntas interesantes, por ejemplo, cuáles son los puntos en donde ésta converge; el mismo Fourier había trabajado con funciones con un número finito de discontinuidades. Fue George Cantor quien trabajó este problema en su tesis doctoral, para un número infinito de discontinuidades. Cantor concibió los conjuntos derivados, los puntos de acumulación y las ideas básicas de la topología conjuntista.

En 1829, a partir de su estudio de la convergencia de la serie de Fourier, Peter Dirichlet (1802-1856) demostró que la serie es convergente para una función continua y acotada y que los coeficientes de Fourier están bien definidos. A raíz de estos estudios, Dirichlet dio la primera definición de función similar a la de hoy día.

Bernhard Riemann (1826-1866) extendió la noción de integral, a fin de hacer plausible la representación en serie de una función, introdujo la derivada generalizada.

Condujo a la invención del concepto de convergencia uniforme, usado por Karl Weiertrass (1815-1897), para integrar término a término la serie de Fourier.

A fines del Siglo XIX se empezaron a estudiar las series divergentes.

Henry Lebesgue (1875-1941) inició, en 1902, su teoría de integración; inspirado en los trabajos de Fourier, inventó la integral de Lebesgue para recuperar la función original a partir de los coeficientes de Fourier.

En los primeros años del Siglo XX estudió los sistemas ortogonales (generalizando la idea de ortogonalidad de Fourier), que conducen a los espacios de Hilbert, iniciando el estudio de los espacios L2 como espacio natural para la convergencia de las series de Fourier. El estudio de las series de Fourier se profundizó en el Siglo XX, creándose la teoría moderna del análisis armónico.

Ha sido fuente de inspiración de trabajos sobre convergencia de series de grandes analistas como Henry Lebesgue (1875-1941), Frygies Riesz (1800-1956), Marcel Riesz (1886-1969), Andrei Kolgomorov (1903-1987), Nikolai Lusin (1883-1960), Antony Zygmund (1900 -1992), Lennart Carleson (1928- ), etc.

Es importante mencionar a la teoría de ondículas, cuyos orígenes están en las ideas de Fourier, como un punto de encuentro de físicos, ingenieros y matemáticos. Fue introducida por Yves Meyer en 1985, gracias a la interacción con el físico Alex Grossman y el ingeniero Jean Morlet. 

 


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

La bacteria P. luminiscens actuó sobre las heridas de los soldados como un como un antibiótico muy eficaz, lo que explica por qué las heridas fluorescentes sanaban más rápido que las heridas sin la bacteria fluorescente. Seguramente, esta bacteria salvó la vida de varios soldados, ¿cómo pasó?

El desarrollo de la investigación matemática ha sido tan espectacular, que abarcar todo el conocimiento actual de la matemática se ha vuelto imposible para cualquier ser humano.

Irán saliendo fritos y refritos, intentonas que seguirán haciendo todo lo posible para manchar el pensamiento y obra del hueso duro de roer, pues la consigna es muy clara: impedir el retorno de Lenin.

Desde su exilio en México, León Felipe prologaba así el poemario "Belleza cruel", de Ángela Figuera, reconociendo la valentía, el coraje y la esperanza de los poetas españoles de la posguerra.

Cada 14 de marzo se celebra el a la Matemática. Esta fecha fue elegida en virtud de que hace alusión a 3.14, que es el valor aproximado del enigmático número Pi (π).

La cinta que hoy comento, amable lector, es también una obra de arte con ese mismo sentido de denuncia hacia la ideología nazi-fascista y sus aplicaciones en el terreno práctico.

Fue el máximo dirigente del Partido Comunista Chino y fundador de la República Popular China en 1949, tras su victoria en la Guerra Civil contra las fuerzas de Chiang Kai Shek, quien se exilió a la isla de Taiwan, creando la China Nacionalista.

El homo sapiens apareció hace 45 mil años y se extendió a América en el 12 mil a.n.e.

El capital ha convertido al deporte en mercancía en torno a la cual giran inmensos negocios mundiales; hoy en día, a pesar de ser un derecho constitucional, apenas un 39% de los mexicanos tienen acceso al deporte.

Son historias de viajeros que por motivos de conquista económica, política, religiosa, curiosidad científica o espíritu de aventura visitaron otras regiones del mundo donde hallaron paisajes, edificaciones y grupos humanos diferentes a ellos.

La tenacidad en su trabajo le acompañó hasta una edad muy avanzada.

La situación actual en Palestina y el genocidio que ahí se vive por parte de Israel, nos obliga a revisar el pasado, buscando huellas que nos permitan tomar una posición crítica al respecto; en esta búsqueda vale la pena recordar un nombre, el de Yasser Arafat.

Actualmente, se ha reducido la enseñanza del deporte a los primeros niveles educativos. Se pretende que la educación sirva a los fines propagandísticos del gobierno de la 4T.

El beisbol revolucionario de Cuba ha demostrado su dominio y calidad en el escenario internacional. Figuras como Yulieski Gourriel, Frederich Cepeda, Héctor Olivera, Alexei Bell y Ariel Pestano han dejado una huella perdurable en el beisbol cubano, ganándose el respeto de los aficionados.

La matemática es un producto cultural.