Cargando, por favor espere...
Si nos remontamos a la antigua cultura griega, fue Aristóteles quien diferenció los conceptos de magnitud asociado a la medición geométrica y la de número como un objeto abstracto de pluralidad, al decir: “uno significa medida de cierta multiplicidad y número significa pluralidad de medidas. Por este motivo es sensato que no se identifique al uno como un número, porque la medida no es un conjunto de medidas, sino que la medida y el uno son principios”.
De esta forma, para los griegos los números naturales empezaban desde el dos. Como objeto de medición, el uno era la unidad para medir las cosas. Desde luego, al particionar al uno se convertía en plural y, por lo tanto, las fracciones sí eran consideradas números. El cero, concebido como ausencia de cantidad, no existía en el mundo griego, puesto que no creían en el no ser; su presencia se vino a establecer muy paulatinamente, al principio como una notación que represente ausencia de cantidad en la numeración indoarábica.
En la actualidad, los números naturales tienen una conceptualización dualista; por un lado, la necesidad de contar (cardinal) y por otro lado la necesidad de ordenar (ordinales), es por ello que para muchos matemáticos (no especialistas en los fundamentos de la matemática), el conjunto de los números naturales empieza desde el uno, en donde es consistente con su aspecto dual. Sin embargo, si le preguntamos a un matemático con entrenamiento en fundamentos de la matemática, nos diría que el conjunto de los números naturales empieza por el cero, que intentaremos explicar a continuación:
Un matemático especialista en fundamentos de la matemática es esencialmente un formalista que intenta, a partir de axiomas y principios muy elementales, dar sustento sólido a la matemática, usa como noción básica los conceptos de conjunto y pertenencia (aunque no los define). En ese sentido, la construcción de los números naturales lo hace mediante el Axioma de conjunto inductivo (xЄSx+=xU{x}ЄS) en donde garantiza siempre la existencia de un determinado conjunto infinito. Con este Axioma debe establecer una cierta ordenación compatible con la relación de pertenencia. Como formalista acepta al conjunto vacío; y usando el Axioma del conjunto inductivo va creando un primer conjunto infinito, sin embargo, se puede hacer lo mismo si se toma cualquier otro conjunto diferente del vacío, luego se procede a demostrar que existe el más pequeño de todos los conjuntos inductivos (intersección de todos ellos) a éste lo llama el conjunto de los números naturales, denotado por ω={0,1,2,3,…}. Es importante mencionar que esta construcción respeta la ordenación del conjunto por inclusión, mientras que la característica de conteo no es relevante empezar por el cero el uno, al fin de cuentas es solo un tema de notación, aunque la ausencia de cantidad que representa el cero no sea muy intuitivo para contar, esto no le preocupa al formalista.
No siempre lo que se enseña mediante el discurso matemático escolar es exactamente lo mismo que se establece en la propia matemática. Esta controversia en torno a si el cero o el uno son números naturales o no, comenzó durante la década de los 60 con la introducción de la llamada Matemática Moderna, bajo la influencia formalista, causando algunas rupturas cognitivas que hasta hoy observamos en la educación.
Como transposición didáctica, empezar a contar y ordenar desde el uno sería lo más sensato como número natural. Sin embargo, desde el formalismo matemático, los números naturales deben considerar al cero como primer elemento si queremos cuantificar al conjunto vacío.
El problema filosófico si el vacío es o no un conjunto es la esencia del ser o no ser, de Anaximandro, Parménides, Paul Sartre y de tantos filósofos. Desde el formalismo, como paradigma actual de la matemática, se decreta mediante un axioma o se demuestra su existencia, pero aceptando otro axioma, es decir, cuando los matemáticos no comprendemos, simplemente axiomatizamos, aunque desde el punto de vista filosófico sea insuficiente, no responde a la conjetura.
El pan y la sal comparten una historia íntimamente relacionada desde su descubrimiento y uso en la alimentación; la cultura los tiene como emblemas relevantes en la vida cotidiana de los pueblos más antiguos.
La importancia de su trabajo científico radicó en que se adelantaron a predecir lo que pasaría antes de la completa destrucción de la capa de ozono (O3).
El Cometa Diablo, compuesto de criomagma, una amalgama de hielo, polvo y gas, presenta una estructura peculiar.
La naturaleza es compleja y se manifiesta de muchas formas. Uno de los instrumentos para estudiar dichas formas es la geometría
Debido a la decisión del gobierno de la “Cuarta Transformación” (4T), de recortar presupuesto al sector de la ciencia, el Gran Telescopio Milimétrico (GTM) corre peligro de dejar de funcionar a partir del primero de septiembre.
La tecnología hace posible que las ventas en línea lleguen a más personas, sin importar donde se encuentren; por lo que cada vez más usuarios de la red realizan compras a través de internet.
Los fractales son estructuras cuyo patrón se repite a diferentes escalas y casi de manera infinita. Están presentes prácticamente en todos los aspectos de nuestro entorno, casi ocultos a simple vista.
Dos especies vegetales que no corren con la misma suerte cuando llegan las festividades navideñas.
Los moquitos tienen un sentido del olfato sumamente fino.
En febrero de 2001 se publicaron los resultados de casi una década de trabajo del prometedor programa de investigación genética: Proyecto Genoma Humano, el cual logró descifrar el 90 por ciento del genoma humano.
“Caffarelli tiene una intuición fantástica, es sencillamente notable… me costó mucho seguirle el ritmo. De algún modo, ve inmediatamente cosas que los otros no ven”, afirmó el afamado matemático Louis Nirenberg.
Estos datos se obtienen de las observaciones que realiza la Conagua en las estaciones climatológicas.
volviendo al ejemplo del futbol, las vacunas son el equivalente a jugar un partido amistoso a principio de temporada, solo nos preparan para los posibles escenarios de una “competencia real”.
El país carece de una Ley en Ciencia y tecnología, aunque se ha hablado al respecto de realizarla, aun no hay avances en este tema.
El caso chileno ilustra los riesgos ecológicos que trae consigo la producción de litio: en el Salar del Carmen se extrae diariamente cantidades gigantescas de agua la empresa SQM, la segunda mayor productora de litio en el mundo.
Sigue cerrada la autopista México-Querétaro
Congreso de la CDMX pide investigar permisos de construcción de Sandra Cuevas
Denuncia Coordinadora Territorial del Pueblo de Mixquic acoso y violencia política
Continúa cerrada circulación de autopista México-Querétaro por accidente
Sheinbaum en el G20 y el camino que México debe seguir
Una lección de Walter Benjamin. Una crítica al progreso
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador