Cargando, por favor espere...

En busca del número π (segunda parte)
El desarrollo de la sociedad planteó nuevos retos que propiciaron la creación de nuevas herramientas, que ayudaron a encontrar el área exacta de un círculo de radio uno.
Cargando...

Los métodos por agotamiento y de reducción al absurdo, formulados por Eudoxo y Arquímedes, no fueron suficientes para encontrar el área exacta de un círculo de radio uno. Sin embargo, esos métodos sentaron la base del cálculo infinitesimal que vino después a resolver el problema del área del círculo y los demás problemas relacionados con áreas bajo la curva.

El cálculo infinitesimal impulsado por Cavalieri, Torricelli, Fermat, Descartes y formalizado después por Newton, Leibniz y Riemann, ayudó al hombre a demostrar que el área del círculo de radio uno era igual al número π.

La búsqueda de este número continuó en el siglo XVIII, cuando la noción del infinito estaba muy avanzada. Con la aparición del método analítico (síntesis de la geometría y el álgebra) en esa época, los cálculos obtenidos se expresaron mediante funciones trigonométricas en forma de series convergentes, productos infinitos y fracciones continuas. Estas formas, para expresar las soluciones ayudaron al hombre a obtener aproximaciones numéricas con un mayor número de decimales. Sin embargo, el área del círculo de radio uno seguía sin encontrarse, ya que el número de decimales aumentaba con cada nueva herramienta matemática inventada por el hombre. Además, la naturaleza del número π también era desconocida. No se sabía si era un número racional o irracional.

Sin embargo, los matemáticos que desarrollaron el cálculo infinitesimal, nunca perdieron la esperanza de encontrar el último dígito del área del círculo. Buscaron incansablemente escribir el valor de π como cociente de dos números, pero conforme mejoraban sus herramientas matemáticas, el valor decimal de π seguía en aumento.

El primer matemático que aportó una perspectiva analítica en la búsqueda del valor de π como cociente de dos números fue el inglés John Wallis (1616–1703). Con la teoría aritmética de los límites, calculó el área de un semicírculo obteniendo la expresión de productos infinitos: que si aumentamos tanto el numerador como el denominador, nos acercaremos al valor de π. William Brouncker, otro matemático contemporáneo de Wallis, expresó el valor  como una serie de fracciones continuas (para más detalle, véase el artículo el número y su historia, de Simon Reif Acherman, pág. 11). La aportación de Leibniz fue también valiosa: en 1674 expresó el valor de π como límite de series infinitas de la siguiente forma: , lo que lo llevó a obtener un mayor número de decimales.

El problema, sin embargo, siguió sin resolverse. No bastaba el método analítico para encontrar el valor exacto del área de un círculo de radio uno; era necesario un nuevo método. Ante este hecho, los matemáticos centraron su atención en series que convergieran mucho más rápido. En esta lista participaron activamente Euler, Machin, de Lagny, todos brillantes. Newton, quien usó la serie de una función trigonométrica, se aproximó al valor de π a 15 decimales. Por su parte, Euler encontró una relación entre el número π y el neperiano e: ; vendría después el matemático alemán, Johann Heinrich Lambert, a demostrar que ambos números eran irracionales, es decir, que ninguno de los dos puede ser solución de una ecuación de primer grado con coeficientes enteros. Este resultado guio a los matemáticos del siglo XIX a crear nuevos métodos. Por ejemplo, con la integral de Riemann (1826–1866), pudo encontrarse al número π como .

Pero los matemáticos no se conformaron con este resultado. En 1849, el francés Joseph Liouville demostró la existencia de números trascendentales, es decir, números que no eran solución de ninguna ecuación algebraica de cualquier grado con coeficientes enteros. Posteriormente, en 1882, el alemán Carl von Lindemann (1852–1939) demostró que, entre esos números trascendentales, se encontraba el número π.

El desarrollo de la sociedad planteó nuevos retos que propiciaron la creación de nuevas herramientas, que ayudaron a encontrar el área exacta de un círculo de radio uno. El cálculo infinitesimal de Riemann propició el encuentro del valor exacto de π y el descubrimiento de su naturaleza.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

Este gran matemático y astrónomo de la antigüedad fue capaz de medir la distancia de la Tierra a la Luna con una precisión importante.

El desarrollo de la investigación matemática ha sido tan espectacular, que abarcar todo el conocimiento actual de la matemática se ha vuelto imposible para cualquier ser humano.

Cuando se habla de entrenamiento deportivo y su dosificación en los atletas, entran en juego diversas variantes que influirán en resultados ya sea positivos o negativos.

Durante la última década en el Reino Unido, se han identificado 19 nuevos mecanismos genéticos de resistencia en bacterias.

Arquímedes es considerado el primer investigador en matemática e ingeniero. La obsesión por resolver problemas matemáticos de su época lo conducía a altos grados de concentración que, incluso, se olvidaba de comer, bañarse y de realizar otras tareas cotid

Las probabilidades de que cause un daño devastador aumentan.

Descartes, fundamentalmente era un filósofo racionalista, llegó a escribir otras obras importantes, en 1641 escribió Meditaciones de Filosofía.

Aunque las ideas iniciales fueron concebidas por Bernhard Riemann y Richard Dedekind, se reconoce que el matemático que consolidó y sentó las bases para la axiomatización de la teoría de conjuntos fue el ruso George Cantor.

A la naturaleza no le importa si los machos son atraídos hacia los machos o las hembras hacia las hembras. Es mas bien la ideología humana la que castiga estos comportamientos, argumentando que solo prohíbe lo que es “antinatural”.

Hasta el último centavo del dinero destinado a fomentar el trabajo científico es arrancado para satisfacer los intereses más oscuros de la “Cuarta Transformación” (4T).

La Secretaría de Salud ya “estudia a los contactos del caso y se atiende al paciente. El diagnóstico aún no es definitivo".

¿Por qué las plantas generan frutos? Porque como todos los seres vivos, buscan perpetuarse en el mundo. El fruto es una adaptación exitosa de las plantas para lograr esta finalidad.

Hace alrededor de 100 mil años se hicieron las primeras modificaciones a algunas herramientas que permitieron la sobrevivencia, y para lograrlo el lenguaje numérico fue fundamental.

¿Cuál es el carácter distintivo de la dialéctica? Pongamos el caso de la guerra, ¿es nociva o es perjudicial? Desde el punto de vista de la dialéctica, es indispensable saber qué guerra se está planteando. Aquí la verdad siempre es concreta.

La empresa Tesla, del multimillonario Elon Musk, pretende fabricar nuevas instalaciones en tres estados de la República Mexicana.