Cargando, por favor espere...

Arquímedes y el cálculo infinitesimal
Los métodos proporcionados por Eudoxo y Arquímedes, hace más de dos mil años, son usados hoy para calcular áreas con cualquier tipo de curvas y volúmenes.
Cargando...

El cálculo infinitesimal, que estudia la unidad de la “discreción y la continuidad” en el mundo de lo infinitamente pequeño, emergió de la fusión entre el método exhaustus de Eudoxo y el método reductio ad absurdum formalizado por Arquímedes. Este último consiste en demostrar que una proposición es verdadera, suponiendo que si no lo fuera, llevaría a una contradicción, por lo tanto, no queda más que ser verdadera. Por ejemplo, para demostrar que raíz de dos es irracional, se niega esta afirmación suponiendo que es racional; después, por medio de una serie de argumentos lógicamente encadenados, se llega a una contradicción. Lo que demuestra que la raíz de dos es un número irracional. Ejemplos de este tipo abundan en la naturaleza matemática, como la proposición sobre la infinitud de los números primos, demostrada por Euclides de Alejandría.

Los métodos exhaustivo y reducción al absurdo fueron usados por Arquímedes para demostrar que el área de un polígono inscrito en un círculo de radio uno y el área de un polígono con el mismo número de lados, pero circunscrito al mismo círculo, coincidían. Arquímedes construyó dos polígonos de 96 lados: uno inscrito y otro circunscrito. Aplicando el método exhaustivo de Eudoxo, encontró el área del polígono inscrito, equivalente a 3.140845 y el del polígono circunscrito a 3.142857. La deducción lógica era: si continuaban  aumentando los lados de ambos polígonos, las áreas en algún momento tendrían que ser iguales, pero demostrar esta aseveración, geométricamente, era imposible. Aquí es donde Arquímedes magistralmente implementó el método por reducción al absurdo: supuso que las áreas encontradas no eran iguales y, a partir de ello, construyó argumentos lógicos que lo llevaron a una contradicción.  

El método reductio ad absurdum, al lado del método exhaustivo, se volvió una herramienta de mucha utilidad entre los griegos para calcular áreas bajo cualquier tipo de curvas. En particular, el área del segmento parabólico, es decir, el área limitada por una parábola y una recta secante a ella. Para ejemplificar, consideremos una parábola abierta hacia abajo que se intersecta con el eje X en A y B. Para agotar el área del segmento parabólico, Arquímedes procedió más o menos de la siguiente manera: trazó un triángulo APB con vértice P en el punto medio del arco de la parábola y los vértices A y B como puntos de intersección de la parábola con el eje X. Posteriormente, al área del segmento parabólico, le restó el área del triángulo APB, quedando, solamente dentro de la parábola, dos segmentos parabólicos menores (dos cuerdas AP y BP). Tomando como base estas cuerdas, construyó dos triángulos nuevos ARP y PQB, con R y Q como puntos medios, respectivamente, de los dos arcos restantes. Arquímedes demostró que el área de cada uno de estos triángulos era igual a una octava parte del triángulo APB. Siguiendo el mismo proceso, volvió a restarle al área del segmento parabólico inicial, las áreas de los triángulos ARP y PQB, quedando ahora cuatro cuerdas: AR, RP, PQ y QB, con los que formó cuatro triángulos y, de la misma manera, demostró que el área de cada uno de estos nuevos triángulos era la octava parte de cada uno de los dos triángulos anteriores. Así continuó ad infinitum y estimó el área total de los triángulos inscritos como cuatro terceras partes del triángulo inicial APB. Como ya se puede observar, estimado lector, al sumar las áreas de todos los triángulos construidos en el interior de la parábola, resulta que dicha suma casi coincide con el área del segmento parabólico. Nuevamente, por reducción al absurdo, Arquímedes demostró que las áreas coincidían y, por tanto, se comprobó que el área del segmento parabólico es igual a cuatro terceras partes del triángulo APB.

Los métodos proporcionados por Eudoxo y Arquímedes, hace más de dos mil años, son usados hoy para calcular áreas con cualquier tipo de curvas y volúmenes y con cualquier tipo de superficies. Ambos métodos fueron retomados posteriormente por el alemán Johannes Kepler para resolver problemas de sólidos de revolución, y por el italiano Bonaventura Cavalieri para crear su principio conocido como principio de Cavalieri. Hoy, los métodos exhaustivo y de reducción al absurdo son los pilares sobre los que se edifica toda la estructura matemática del cálculo infinitesimal.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

La situación que enfrentan los tabasqueños es complicada y de alto riesgo. Urge implementar programas de desinfección.

El esfuerzo debe concentrarse en una capacitación intensa a los profesores, para que ellos a su vez repliquen esta enseñanza en sus alumnos, de modo que en el futuro  muchos estudiantes pertenecientes a la clase pobre dispongan de las herramientas adecua

Los problemas personales no afectaron su brillante carrera académica; su jornada incluía largas horas de concentración.

"Durante esta administración empezamos muy mal desde que se decía que los científicos éramos la mafia. Todos los apoyos, hubo una reducción clara", afirmó el investigador Alfredo Herrera Estrella.

Trece mujeres de la Universidad de Harvard marcaron un punto de inflexión en la historia en una época donde las mujeres generalmente eran excluidas de participar en el ámbito científico.

Las siete mil 700 millones de personas que hay en la Tierra, aunado al actual modelo de vida consumista y desenfrenado, aceleran las condiciones de cambio climático que estamos enfrentando, como el calor y el frío.

Una consecuencia sorprendente del resultado BanachTarski, es demostrar que se puede particionar una bola del tamaño de la tierra, reordenar esta partición y obtener una bola del tamaño del sol.

Hoy más que nunca, es urgente y necesario rescatar la ciencia y practicarla, si no queremos regresar a la época del oscurantismo y el absolutismo.

Cuando se habla de entrenamiento deportivo y su dosificación en los atletas, entran en juego diversas variantes que influirán en resultados ya sea positivos o negativos.

El pasado tres de febrero, otro golpe brutal a la naturaleza tuvo lugar en Ohio, cuando un tren con sustancias peligrosas se descarriló y liberó gases venenosos; 14 de sus 150 vagones contenían 100 mil litros de cloruro de vinilo.

El inicio de la rigurosidad en el pensamiento matemático es obra del gran maestro Weierstrass, quien, entre otras atribuciones, estableció la existencia de una curva continua sin tangentes, sorprendiendo a los analistas de su época.

La Organización Panamericana de la Salud señala que entre 2015 y 2050 en América Latina, el 68% de las mujeres serán más propensas a padecer demencia que los hombres.

Como resultado de la fiscalización que hizo la ASF al Sistema Nacional de Investigadores del CONACYT; se detectaron inconsistencias por casi 20 millones de pesos.

Se observaron más microplásticos en los polvos atmosféricos cerca de los centros industriales, comerciales y urbanos como: Tlalnepantla, Iztapalapa y La Merced.

Este libro compila los estudios que 11 psicólogos, sociólogos y antropólogos dedicaron al fenómeno de la comunicación de masas en Estados Unidos.