Cargando, por favor espere...
El cálculo infinitesimal, que estudia la unidad de la “discreción y la continuidad” en el mundo de lo infinitamente pequeño, emergió de la fusión entre el método exhaustus de Eudoxo y el método reductio ad absurdum formalizado por Arquímedes. Este último consiste en demostrar que una proposición es verdadera, suponiendo que si no lo fuera, llevaría a una contradicción, por lo tanto, no queda más que ser verdadera. Por ejemplo, para demostrar que raíz de dos es irracional, se niega esta afirmación suponiendo que es racional; después, por medio de una serie de argumentos lógicamente encadenados, se llega a una contradicción. Lo que demuestra que la raíz de dos es un número irracional. Ejemplos de este tipo abundan en la naturaleza matemática, como la proposición sobre la infinitud de los números primos, demostrada por Euclides de Alejandría.
Los métodos exhaustivo y reducción al absurdo fueron usados por Arquímedes para demostrar que el área de un polígono inscrito en un círculo de radio uno y el área de un polígono con el mismo número de lados, pero circunscrito al mismo círculo, coincidían. Arquímedes construyó dos polígonos de 96 lados: uno inscrito y otro circunscrito. Aplicando el método exhaustivo de Eudoxo, encontró el área del polígono inscrito, equivalente a 3.140845 y el del polígono circunscrito a 3.142857. La deducción lógica era: si continuaban aumentando los lados de ambos polígonos, las áreas en algún momento tendrían que ser iguales, pero demostrar esta aseveración, geométricamente, era imposible. Aquí es donde Arquímedes magistralmente implementó el método por reducción al absurdo: supuso que las áreas encontradas no eran iguales y, a partir de ello, construyó argumentos lógicos que lo llevaron a una contradicción.
El método reductio ad absurdum, al lado del método exhaustivo, se volvió una herramienta de mucha utilidad entre los griegos para calcular áreas bajo cualquier tipo de curvas. En particular, el área del segmento parabólico, es decir, el área limitada por una parábola y una recta secante a ella. Para ejemplificar, consideremos una parábola abierta hacia abajo que se intersecta con el eje X en A y B. Para agotar el área del segmento parabólico, Arquímedes procedió más o menos de la siguiente manera: trazó un triángulo APB con vértice P en el punto medio del arco de la parábola y los vértices A y B como puntos de intersección de la parábola con el eje X. Posteriormente, al área del segmento parabólico, le restó el área del triángulo APB, quedando, solamente dentro de la parábola, dos segmentos parabólicos menores (dos cuerdas AP y BP). Tomando como base estas cuerdas, construyó dos triángulos nuevos ARP y PQB, con R y Q como puntos medios, respectivamente, de los dos arcos restantes. Arquímedes demostró que el área de cada uno de estos triángulos era igual a una octava parte del triángulo APB. Siguiendo el mismo proceso, volvió a restarle al área del segmento parabólico inicial, las áreas de los triángulos ARP y PQB, quedando ahora cuatro cuerdas: AR, RP, PQ y QB, con los que formó cuatro triángulos y, de la misma manera, demostró que el área de cada uno de estos nuevos triángulos era la octava parte de cada uno de los dos triángulos anteriores. Así continuó ad infinitum y estimó el área total de los triángulos inscritos como cuatro terceras partes del triángulo inicial APB. Como ya se puede observar, estimado lector, al sumar las áreas de todos los triángulos construidos en el interior de la parábola, resulta que dicha suma casi coincide con el área del segmento parabólico. Nuevamente, por reducción al absurdo, Arquímedes demostró que las áreas coincidían y, por tanto, se comprobó que el área del segmento parabólico es igual a cuatro terceras partes del triángulo APB.
Los métodos proporcionados por Eudoxo y Arquímedes, hace más de dos mil años, son usados hoy para calcular áreas con cualquier tipo de curvas y volúmenes y con cualquier tipo de superficies. Ambos métodos fueron retomados posteriormente por el alemán Johannes Kepler para resolver problemas de sólidos de revolución, y por el italiano Bonaventura Cavalieri para crear su principio conocido como principio de Cavalieri. Hoy, los métodos exhaustivo y de reducción al absurdo son los pilares sobre los que se edifica toda la estructura matemática del cálculo infinitesimal.
En la ruleta los resultados son equiprobables, no hay predilección por ningún número o color.
Los bosques de oyamel (familia Pinaceae) constituyen un ecosistema que se desarrolla a una altitud de entre dos mil y tres mil 600 metros sobre el nivel del mar y se pueden encontrar en las zonas montañosas de México.
El hombre antiguo estuvo “muy cerca” de hallar el área del círculo. Sin embargo, como nos enseñaron en “las buenas escuelas”, el área del círculo con radio uno es un número irracional con un número infinito de dígitos que no son periódicos.
La intención es lograr un lente de material blando que logre un acercamiento, en un primer prototipo, de 32 por ciento con respecto a la visualización normal.
“La extinción de especies es uno de los grandes problemas ambientales y, junto con el cambio climático y un holocausto nuclear, podrían colapsar la civilización”, planteó el ecólogo mexicano Gerardo Ceballos.
Durante el gobierno de Napoleón, Francia vivió una época brillante para la ciencia, se hablaba del Imperio de las Ciencias.
En la mitología griega, las Moiras tejían un hilo cuando alguien nacía y lo cortaban al momento de su muerte. ¿Cuándo ha de cortarse y qué ocurre en ese momento, de acuerdo con la ciencia?
Dado que los nutrientes de una selva están inmovilizados en la densa vegetación, el suelo es poco fértil y no es adecuado para desarrollar actividades agropecuarias. Al talar los árboles, los nutrientes se van en los troncos y no retornan al suelo.
El concepto tiempo asocia a los tres componentes estructurales del universo: materia, movimiento y espacio.
Entre marxistas es frecuente afirmar que lo más importante de Marx no fue lo que dijo, sino su método de conocimiento. Esto es así porque, así como el universo es infinito, también lo es su conocimiento.
Como resultado de la fiscalización que hizo la ASF al Sistema Nacional de Investigadores del CONACYT; se detectaron inconsistencias por casi 20 millones de pesos.
Queda claro que AMLO tiene un desconocimiento abismal acerca de la relación entre la ciencia y la política.
Las matemáticas, por muy abstractas que sean, tienen una base real.
El mal manejo, la extracción ilegal y la mala información, así como los mitos y el desarrollo turístico, han llevado a pérdidas importantes en el número de poblaciones de la cacerolita de mar.
La participación de las mujeres en el desarrollo de las matemáticas ha sido escasa, comparada con la de los hombres
Habrá apagón de 8 horas en Yucatán, anuncia CFE
Secretaría de Salud elimina programas para 2026
México está lejos de la meta de generar 1.5 millones de empleos
Dan sentencia definitiva a Cuauhtémoc Blanco por violencia política de género
Habitantes de Ixtapaluca alistan protestas por mal Gobierno de Felipe Arvizu
Trabajadores de Pemex lanzan campaña por una jubilación digna
Escrito por Romeo Pérez
Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.