Cargando, por favor espere...
Para dar solución a sus necesidades prácticas, el hombre tuvo que perfeccionar los medios de trabajo, sus métodos de investigación y profundizar en los conocimientos sobre fenómenos concretos. Fue así como al calcular áreas de terrenos accidentados, volúmenes de objetos irregulares y organizar su tiempo durante el día para optimizar su quehacer diario, el hombre desarrolló una forma precisa de cálculo y medición conocido hoy como cálculo de infinitésimos o cantidades infinitamente pequeñas.
Los infinitésimos surgieron con la teoría atomista de Leucipo de Mileto (siglo V a. C.) y Demócrito de Abdera (460–370 a. C.) para dar respuesta al problema de las magnitudes continuas, consideradas en la antigüedad como conjunto de partículas infinitamente pequeñas denominadas átomos. Apoyándose en estas consideraciones atomistas, Zenón de Elea (490–430 a. C.), con sus más de 40 aporías, entre las que destacan La dicotomía de Aquiles y la tortuga, El corredor en el estadio y La flecha voladora, hizo ver a sus contemporáneos que era imposible caracterizar una magnitud continua como un conjunto de partículas infinitamente pequeñas.
Pero llegó Eudoxo de Cnido (390–337 a. C.), uno de los matemáticos más sobresalientes de la Academia de Platón, quien demostró que Zenón estaba en un error: que siempre es posible caracterizar una magnitud continua haciendo que algo sea tan pequeño como se quiera. Con este planteamiento, Eudoxo resolvió las aporías de Zenón, que habían surgido en el tratamiento de los procesos infinitos, y desarrolló un método geométrico de aproximación conocido como método por agotamiento, usado para hallar áreas de figuras curvilíneas, entre ellas el círculo. Para encontrar el área aproximada del círculo, Eudoxo calculó primero el área del polígono inscrito. Al agregarle más lados, se dio cuenta que el polígono se asemejaba más al círculo; con eso concluyó que si observaba el área del polígono, encontraría también el área del círculo.
La tarea, sin embargo, se abandonó durante un largo periodo y fue con Arquímedes de Siracusa (287–212 a. C.) cuando se retomó. Este genio, para calcular áreas de superficies curvas y volúmenes de sólidos, combinó el método por agotamiento con el de reducción al absurdo, el cual consiste en construir una contradicción usando la negación de lo que se quiere demostrar. El trabajo de Arquímedes consistió en calcular, mediante el método por agotamiento, el área de un polígono regular de 96 lados, en un círculo de radio uno, primero, y circunscrito después. Luego comparó las áreas de esos polígonos y observó que la diferencia entre ellas era muy pequeña, a tal grado que las áreas de cada uno podrían considerarse equivalentes. Arquímedes construyó una contradicción mediante la negación de dicha equivalencia y demostró efectivamente que el área del polígono inscrito era equivalente al área del polígono circunscrito, y que cada una de las áreas se aproximaba a la del círculo considerado. Se sabe que Arquímedes calculó el valor del número irracional π a 11 decimales cuando se aproximó al área de un círculo de radio uno.
Con todo y su genialidad, el más notable de los científicos de Siracusa no resolvió el problema en su totalidad. El área de los dos polígonos usados por él para encontrar el área del círculo radio uno, no cubría el área total de éste, pues quedaban espacios infinitamente pequeños que él no pudo cubrir.
No fue sino hasta 1635 cuando el matemático italiano Bonaventura Francesco Cavalieri (1598–1647), en su obra traducida y titulada Una nueva forma de desarrollar la geometría usando el indivisible continuo, retomó el método por agotamiento de Eudoxo y el de reducción al absurdo de Arquímedes, e incorporó a su obra la teoría infinitesimal como actualmente se estudia en las matemáticas superiores, incluyendo con ello el concepto formal del infinito y pequeñas cantidades geométricas de Kepler. Con la introducción del infinito en las matemáticas, Cavalieri logró con éxito encontrar el área del círculo. A partir de entonces, la medida de las longitudes y el cálculo de áreas y volúmenes comenzaron a calcularse mediante la suma de una infinidad de indivisibles, permitiendo al inglés Isaac Newton (1643–1727) y al alemán Gottfried Wilhelm Leibniz (164–1716), unificar y complementar el cálculo diferencial con el cálculo integral.
Dado que los nutrientes de una selva están inmovilizados en la densa vegetación, el suelo es poco fértil y no es adecuado para desarrollar actividades agropecuarias. Al talar los árboles, los nutrientes se van en los troncos y no retornan al suelo.
El pequeño Pablo contó con la asesoría de la profesora Laura Julia Sánchez; su proyecto se centra en la conservación de una especie crucial para la biodiversidad y los ecosistemas acuáticos de las barrancas de Cuernavaca.
La temporada comenzará el 1 de junio y terminará el 30 de noviembre.
El club de los matemáticos está constituido por un conjunto de seres humanos con alta formación matemática y capaces de inventar nuevos teoremas.
Esta herramienta prescinde de las cuerdas vocales y restaura el habla ofreciendo esperanza para pacientes con trastornos de la voz.
Para nuestro país, la polinización representa una ganancia económica de entre 100 y 250 dólares por hectárea.
Este libro compila los estudios que 11 psicólogos, sociólogos y antropólogos dedicaron al fenómeno de la comunicación de masas en Estados Unidos.
Si el país tuviera los medios para aprovechar sustentablemente su vegetación, podría cosechar el equivalente a 56 mil 126 millones de pesos.
Marx incluyó en su obra El Capital las características de la agricultura capitalista, la cual extraía más nutrientes del suelo de los que le devolvía, dejando a las tierras infértiles.
La irracionalidad ayuda al hombre a comprender la continuidad y la discontinuidad de la materia.
En esta temporada de frío y cambios bruscos de temperatura, los humanos somos lábiles a presentar resfriados y afecciones respiratorias. No así animales como el oso polar o el pingüino emperador, que resiste hasta -60°C-
En la mitología griega, las Moiras tejían un hilo cuando alguien nacía y lo cortaban al momento de su muerte. ¿Cuándo ha de cortarse y qué ocurre en ese momento, de acuerdo con la ciencia?
Con una longitud de 11 kilómetros de largo y siete metros de alto, China tiene la autopista submarina más larga del mundo, denominada Taihu.
Sostener que el arte es un reflejo de la sociedad, así a secas, distorsiona y mutila el papel de la actividad artística y de los artistas. La práctica artística es, en realidad...
Mientras el trabajo matemático tiene reglas, axiomas, y su libertad está en función de estar gobernado por sistemas formales; en el trabajo filosófico...
Incendio en fábrica de colchones moviliza a cuerpos de emergencia en Iztacalco
Pensiones superan gasto en salud y educación
“No hay acuerdo completo” sobre Ucrania, admite Trump tras reunión con Putin en Alaska
Crece lista de funcionarios sin visa por orden de EE. UU.
Alcaldía Iztapalapa ocupa 1er lugar en socavones en CDMX
Acusa Lozoya a Julio Scherer de corrupción en caso Odebrecht
Escrito por Romeo Pérez
Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.