Cargando, por favor espere...

Tlaixaxiliztli
La negación dialéctica y el espacio curvo de Riemann
Así fue como nacieron las nuevas geometrías, que describen con más exactitud el universo donde vivimos, sin omitir y rechazar a la geometría euclidiana.


La negación –decía Vladimir Illich Uliánov Lenin– es dialéctica únicamente cuando sirve de fuente de desarrollo, cuando conserva y mantiene todo lo positivo del anterior grado de desarrollo. Las negaciones de este tipo pueden encontrarse también en las ciencias y, sobre todo, en las matemáticas, ya que éstas son las más abstractas entre todas las ciencias aplicadas a la investigación de la naturaleza. Precisamente por esta característica, las contradicciones y las negaciones dialécticas son más fáciles de encontrar, decía el matemático francés Gastón Casanova en su obra La matemática y el materialismo dialéctico.

En efecto, las matemáticas no solamente contienen negaciones lógicas, sino también y sobre todo negaciones y contradicciones dialécticas, como las que surgieron del quinto postulado de Euclides para dar origen a las geometrías no-euclidianas, tales como la geometría hiperbólica de Nikolái Lobachevski y Janos Bolyai y la geometría elíptica de Bernhard Riemann, ramas de la matemática que demuestran que el espacio donde vivimos es curvo y no plano, como se consideró durante más de dos mil años.

Al percatarse que la geometría euclidiana no describía algunos fenómenos de la naturaleza, o no los demostraba completamente, los matemáticos arriba citados comenzaron a cuestionar la validez de los axiomas y postulados sobre los que descansaba esa geometría. Pronto notaron que había un error y que era necesario revisar el quinto postulado de Euclides, es decir el de las paralelas, el cual afirmaba que dos rectas p y q pueden ser paralelas únicamente si la suma de los ángulos internos que forman con una secante es igual a 180 grados. La primera negación la hicieron, de manera independiente, el ruso Lobachevski, en 1826, y el húngaro Janos Bolyai, en 1831: que las rectas p y q pueden ser también paralelas si la suma de los ángulos internos que forman con una secante es inferior a 180 grados, lo que implica que hay una infinidad de rectas que pasan por el mismo punto y todas son paralelas a la recta dada. La segunda negación fue descubierta por el matemático alemán Riemman en 1854: que las rectas p y q nunca son paralelas si la suma de los ángulos internos que forman con una secante es mayor a 180 grados, es decir, la existencia de una infinidad de rectas que pasan por un mismo punto y ninguna es paralela a la recta dada.

Tanto Lobachevski como Riemann tuvieron que hacer uso de la práctica para demostrar sus afirmaciones. El primero, cuando observó un triángulo astronómico cuyos vértices estaba “puestos” en el Sol, la Tierra y la estrella Sirio y encontró que la suma de los ángulos interiores de aquel triángulo era menor a 180 grados. El segundo comprobó su teoría cuando observó que dos rectas paralelas (180 grados) levantadas desde el ecuador terrestre hacia el Polo Norte se intersectaban. Al sumar los ángulos interiores del triángulo formado, demostró que era mayor a 180 grados.

Así fue como nacieron las nuevas geometrías, que describen con más exactitud el universo donde vivimos, sin omitir y rechazar a la geometría euclidiana. Ésta fue superada por una negación dialéctica para dar origen a las geometrías hiperbólica y elíptica.

Ahora bien, si analizamos con mucho detenimiento las tres geometrías, la euclidiana, la hiperbólica y la elíptica, observaremos inmediatamente que son contradictorias, pues la primera afirma que hay una y solo una recta paralela a la recta dada; la segunda, que hay una infinidad de paralelas, y la tercera y la última que no hay paralelas, que todas cortan a la recta dada. ¿Cuál es, entonces, la geometría que mejor describe al universo? ¿Es posible obtener una síntesis dialéctica de las tres geometrías mencionadas y que describa con más exactitud el universo en el que vivimos? La respuesta no es fácil, sin embargo hay ejemplos que demuestran que las tres geometrías originan una nueva. El matemático Riemann fue quien, al usar la concepción infinitesimal de la geometría, descubrió la existencia de un nuevo espacio –el espacio curvo de Riemann– que ayudaría posteriormente a Albert Einstein en la creación de su espacio curvo, conocido hoy como el espacio-tiempo.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

esp.jpg

En este artículo no hablaré de los libros que son útiles para la enseñanza, ni de divulgación, me centraré en libros estrictos de la disciplina. Aunque la matemática y la filosofía son distintos, tienen elementos en común.

PLILIAS.jpg

Otra de las ventajas del cultivo in vitro es que le permite al hombre controlar la humedad, la temperatura y la luz, factores decisivos para el crecimiento de una planta, que, de manera natural, no pueden ser controlados.

curva.jpg

La deficiencia o error no está en el modelo matemático que se está usando, sino en la metodología implementada, en la recopilación de información y en los cálculos aritméticos.

pla.jpg

La influencia que han ejercido las ideas de Platón (Atenas, 429-347 a. C.) en la mente de los matemáticos perdura hasta nuestros días. Matemáticos contemporáneos como G. H. Hardy y Kurt Gödel son declarados platonistas.

ciencia.jpg

Actualmente, diferentes grupos de científicos alrededor del mundo trabajan en la búsqueda y el desarrollo de tratamientos para combatir el Covid-19; el reto es que éstos sean eficaces contra las variantes actuales y futuras.

esp.gif

La gran pasión científica de Pierre Laplace era establecer matemáticamente la estabilidad de nuestro sistema solar; para ello, se propuso aplicar las leyes de la gravitación de Newton y explicar ciertas perturbaciones observadas en Saturno y Júpiter cuand

romeo.jpg

Este fenómeno se encuentra en el movimiento de los mares, en los chorros que salen de un grifo con suficiente velocidad.

Un Camino de Innovación para el Mundo en la Nueva Era (III)

Este año, China auspiciará el Tercer Foro de la Franja y la Ruta para la Cooperación Internacional. De cara al futuro, China seguirá promoviendo la cooperación en innovación en el marco de la construcción conjunta de la Franja y la Ruta.

Táctica deportiva y entrenamiento: ¿inconsciente o consciente?

Cuando se habla de entrenamiento deportivo y su dosificación en los atletas, entran en juego diversas variantes que influirán en resultados ya sea positivos o negativos.

ci.jpg

El ChatGPT funciona como un programa que responde preguntas, genera texto y sostiene charlas, simulando una conversación real entre personas. Es muy útil, sin embargo, también tiene algunas limitaciones.

La ciencia de la comunicación humana, de Wilbur Schramm (II - II)

Desde hace más de un par de siglos el electorado estadounidense está dividido en tercios: uno republicano inamovible, otro demócrata igualmente invariable y otro 33 por ciento inerte.

planeta.jpg

El mundo cambia, la gran honda cósmica se mueve con base en leyes, no en plegarias.

ti.jpg

Gran parte del problema ecológico está resuelto hoy día. ¿Qué falta? La ciencia tiene la razón, pero ahora reina la irracionalidad. ¿Quién debe parar esta locura? Los que la sufren. La gran mayoría no tiene consciencia de esto.

adn.jpg

El sistema CRISPR/Cas9 es considerado como el método más simple, versátil y preciso de manipulación genética.

mate.jpg

Fermat nunca publicó un artículo matemático, todos sus aportes eran mediante cartas personales, sin embargo sus conjeturas fueron importantes para el desarrollo matemático.