Cargando, por favor espere...
El número π, que en griego significa periferia o perímetro, es una constante que representa el área de un círculo de radio uno. Su valor se calcula tomando el perímetro de una circunferencia y dividiéndolo por su diámetro. Así fue como, inicialmente, los antiguos matemáticos comenzaron a calcular el área de un círculo hasta encontrar la fórmula que hoy conocemos como π r2.
Varios siglos tuvieron que transcurrir para que el hombre precisara el área del círculo de radio uno. La historia de esa constante comenzó desde que el hombre tuvo necesidad de construir pirámides con bases circulares y cilíndricas, como lo demuestran los papiros de Ahmes y Moscú.
En efecto, la noción acerca de aquel maravilloso número nació con las culturas egipcia y sumeria; luego, su conocimiento se trasladó a la cultura griega, con la que alcanzó su más alto desarrollo, con las aportaciones geométricas de los matemáticos Eudoxo de Cnido y Arquímedes de Siracusa. Sin embargo, los métodos por agotamiento y reducción al absurdo, usados por aquellos científicos, aunque muy superiores a los usados por sus antecesores, les ayudó a aproximarse solo a 11 decimales del valor de π.
Fue necesario, pues, crear una nueva herramienta matemática que fortaleciera el método por agotamiento o aproximación usado por los matemáticos griegos. Varios autores coinciden en que el método, que consistía en calcular el área de una figura cualquiera por medio de aproximaciones y particiones, era la base del cálculo infinitesimal, pero incipiente; que para resolver el problema planteado, los matemáticos debían proporcionar nuevas herramientas matemáticas, como las relacionadas con lo infinitamente grande e infinitamente pequeño.
No fue sino hasta mediados del Siglo XVII, cuando tal cálculo infinitesimal se fortaleció con los científicos Torricelli y Cavalieri, quienes introdujeron el concepto formal del infinito. Ahora, con el conocimiento de lo infinitamente pequeño y las particiones infinitas, Fermat y Descartes lograron crear el cálculo diferencial, que fue unificado posteriormente con el calculo integral creado por Arquímedes. La síntesis de estas dos herramientas matemáticas, a través del Teorema Fundamental del Cálculo, dio origen al cálculo diferencial e integral, una herramienta muy poderosa que vino a resolver el problema del área bajo la curva y que resolvió, en definitiva, el problema del área del círculo, no solo de radio uno, sino de cualquier radio.
Aunque Leibniz y Newton fueron los que sintetizaron el cálculo diferencial con el cálculo integral, no fueron ellos quienes dieron solución al área del círculo de radio uno. De hecho, sus resultados acerca del numero π ni siquiera estaban relacionados con las integrales, sino con series de fracciones continuas, productos infinitos y series infinitas que contribuyeron, desde luego, a aportar más decimales al valor de π. Fue el matemático alemán Bernhard Riemann (1826–1866) quien aclaró el problema del área del círculo de radio uno. El método usado por este matemático se basó, en primer lugar, en particiones de un intervalo. En segundo lugar, levantó una altura para cada partición del intervalo hasta tocar la curva, a la que le quería calcular el área. Finalmente, sumó el área de cada rectángulo infinitamente delgado que había construido. Es decir, sumó la diferencia de las particiones multiplicadas por la altura, haciendo que esa diferencia fuera cada vez más pequeña hasta convertirse en cero. Este método, conocido como la Suma de Riemann, lo llevó a encontrar el valor exacto del área bajo la curva y, como consecuencia, el área exacta del círculo de radio uno.
Como ya se dio cuenta, amigo lector, la historia enseña al mismo maestro y a su alumno el significado de cada fórmula matemática. La historia comunica al hombre el avance de esta ciencia en cada época y cómo sus métodos van perfeccionándose con el desarrollo de la sociedad. En el caso particular de la historia del número π, el cálculo infinitesimal le enseñó al hombre que calcular todos sus decimales es imposible. Ni las supercomputadoras más sofisticadas del mundo han descubierto los valores de este número. La cantidad más grande de dígitos encontrados hasta este momento es 13 billones de decimales. Sin embargo, con el método matemático, el hombre ha demostrado que esa constante es un número irracional (véase Cálculo infinitesimal de Michael Spivak, págs. 547–462) y que tiene una infinidad de decimales que no se repiten.
Su domesticación ha traído casi cien variedades de esta especie, dentro de las que se pueden encontrar plantas con las típicas hojas color verde y escarlata.
El sustento del conocimiento matemático se desarrolló en la antigua Grecia; uno de los filósofos que contribuyó a su desarrollo fue Aristóteles, quien planteó las leyes básicas del pensamiento humano a fin de obtener deducciones válidas.
Evariste Galois fue uno de los grandes genios de la humanidad y el matemático más joven de la historia matemática.
El uso de semillas mejoradas es una alternativa que garantiza la rentabilidad de las cosechas y la seguridad alimentaria, pero esa tecnología no es accesible para los 6.8 millones de personas que se dedican al sector agrícola.
“Estamos cerca de crear lo que se llama oncovacunas, vacunas contra el cáncer y medicamentos inmunomoduladores de nueva generación", afirmó el presidente de Rusia, Vladimir Putin.
Con sus ataques a las instituciones educativas y culturales, López Obrador pretende eliminar el pensamiento crítico, una actitud retrógrada muy parecida a la que hace varios siglos desembocó en el asesinato de judíos en la primera mitad del Siglo XX.
Este libro compila los estudios que 11 psicólogos, sociólogos y antropólogos dedicaron al fenómeno de la comunicación de masas en Estados Unidos.
El ser humano tiene la capacidad de obtener e interpretar la información que obtiene de su medio ambiente para generar una respuesta, en forma de movimiento.
Mirar directamente al Sol durante un eclipse puede causar daños irreversibles en la retina, incluso sin sentir dolor; como sucedió en 1991.
AMLO olvida que el desarrollo económico de un país está directamente relacionado con las inversiones en la investigación y la producción de ciencia y tecnología.
El medio chino People's Daily dio a conocer al nuevo miembro de su equipo de noticias: Ren Xiaorong, una presentadora digital impulsada por inteligencia artificial (IA).
¿Es posible encontrar la cuadratura de una figura geométrica? la respuesta en este texto. La cuadratura de una figura geométrica consiste en encontrar exactamente su área en un cuadrado.
Para describir el comportamiento de los fenómenos físicos, biológicos, químicos, sociales o económicos, el hombre recurre, en la mayoría de los casos, a modelos matemáticos para ayudarse a resolver dos tipos de problemas.
Hoy más que nunca, es urgente y necesario rescatar la ciencia y practicarla, si no queremos regresar a la época del oscurantismo y el absolutismo.
¿Por qué las plantas generan frutos? Porque como todos los seres vivos, buscan perpetuarse en el mundo. El fruto es una adaptación exitosa de las plantas para lograr esta finalidad.
Dan sentencia definitiva a Cuauhtémoc Blanco por violencia política de género
México está lejos de la meta de generar 1.5 millones de empleos
Casi un millón de estudiantes abandonaron la escuela en el ciclo 2024-2025
Trabajadores de Pemex lanzan campaña por una jubilación digna
Van contra la opacidad en la medición de la pobreza; distintas ONG lanzan iniciativa propia
El PACIC, otro fracaso que la 4T no admite
Escrito por Romeo Pérez
Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.