Cargando, por favor espere...
En este capítulo nos introduciremos brevemente al desarrollo del pensamiento matemático y su estructura. El sustento del conocimiento matemático es el pensamiento hipotético-deductivo, que se desarrolló en la antigua Grecia; uno de los filósofos de la antigüedad que contribuyó a este desarrollo fue Aristóteles (384-322 a.C.), quien planteó las leyes básicas del pensamiento humano a fin de obtener deducciones válidas; estas leyes básicas son: 1) El principio de identidad, afirma que si un enunciado es verdadero, entonces es verdadero. 2) El principio de no contradicción, afirma que ningún enunciado puede ser verdadero y falso a la vez. 3) El principio del tercero excluido, afirma que un enunciado es verdadero o falso, no existen más posibilidades.
La lógica aristotélica parte del supuesto de que los procesos cognitivos reproducen lo que ocurre en la realidad objetiva, o sea, que las cosas extramentales existen tal como son pensadas por la mente humana. El ser humano internaliza el conocimiento a partir de las cosas que observa y experimenta, bajo esta perspectiva se desarrolló la matemática griega.
En matemática existen dos elementos básicos en su estructura, los conceptos y el método axiomático formal. El concepto constituye el primer nivel del pensamiento matemático en su forma lógica, con ello reflejamos las cualidades genéricas y esenciales de los objetos y fenómenos de la realidad. En matemática, los objetos son mentales; y los matemáticos crean o inventan sus propios objetos de estudio.
Por ejemplo, el concepto de número natural nace de la coordinación del conjunto de objetos materiales, tales como los dedos de las manos, las piedras para contar el número de ovejas de un rebaño, etc., donde la propiedad genérica reflejada mentalmente es la cantidad de los objetos, los números naturales solo existen a nivel conceptual en la mente humana, no son susceptibles de ser percibidos por nuestros sentidos. Esto indica que ningún ser humano puede ver, oler o tocar algún número natural; además, estos objetos matemáticos creados cognitivamente no interactúan con los seres humanos. A menudo, los conceptos matemáticos se relacionan o encadenan con otros conceptos más elementales.
Para los conceptos más elaborados, por ejemplo, el concepto de número par o impar, igualdad, etc.,se tiene un mecanismo que nos permite precisar este concepto, describiendo de manera lógica y sin ambigüedades las propiedades o relaciones que tienen los objetos, este mecanismo es llamado definición. Una definición matemática es una descripción precisa de las características esenciales de los objetos y fenómenos y abarca un concepto y muestra sus relaciones con otros conceptos más generales.
El edificio matemático que se va construyendo a partir de estos conceptos (definibles o no) y a través de afirmaciones evidentes que los griegos llamaron postulados o axiomas; por ejemplo, dos puntos determinan una recta, para luego pasar a construir el conocimiento matemático con afirmaciones que necesitan una deducción lógicamente rigurosa (demostraciones) para ser aceptadas, los griegos las llamaron teoremas, lemas, corolarios, etc., según el grado de importancia que tenían.
En la actualidad, un sistema axiomático formal lo constituyen términos primitivos (no definibles), axiomas (preestablecidos) y deducciones (teoremas) sujetos a reglas de inferencia. Actualmente existen distintos sistemas axiomáticos formales que fundamentan casi toda la matemática inventada por el ser humano; sin embargo, el sistema de Zermelo-Franklin es hoy en día el más aceptado. Ver el libro Una axiomatización de la teoría de conjuntos escrito por Esptiben Rojas, en el que se hace un estudio detallado de tal sistema.
En todas las ramas de la Física, la Química, la Biología y, en general, en todas las disciplinas científicas y aún en las humanidades y ciencias sociales se trata de establecer una sistematización, consistente en un encadenamiento y ordenación lógica de los conceptos y proposiciones que las constituyen, de manera que una proposición o concepto posterior esté lógicamente fundamentado en las anteriores; en esta ordenación hay un grupo primario de proposiciones y conceptos. Lo anterior nos indica que estas disciplinas tratan de estructurarse conforme al método axiomático formal o, en otras palabras, tienden a matematizarse, revelando indiscutiblemente la potencia e importancia de la matemática para el desarrollo del conocimiento humano. Un sistema de axiomas debe tener tres características esenciales: compatibilidad, independencia y completitud (idealmente).
La disminución de la biodiversidad podría aumentar el riesgo de enfermedades crónicas para la humanidad.
Las buenas noticias disparadas desde Palacio Nacional, que pintan a un México próspero y “feliz”, parecen no corresponderse con las estadísticas del INEGI.
“Para los mexicanos, el maíz está entrelazado con su vida, su historia y sus tradiciones; no es solo un cultivo, sino el centro de su identidad", Sin embargo, hoy el maíz no cubre la demanda nacional, entre otras deficiencias.
La realidad es más compleja de lo que la ciencia sabe de ella y nos damos cuenta.
Charles convence a su hija de que acepte los títulos al portador de una empresa “fantasma”, quien está controlada por Mossack y Fonseca
Fermat nunca publicó un artículo matemático, todos sus aportes eran mediante cartas personales, sin embargo sus conjeturas fueron importantes para el desarrollo matemático.
La Federación Internacional de Robótica proyecta que seguirá creciendo la demanda de robots industriales con la instalación de 600 mil robots nuevos en todo el mundo para el año 2024.
Las redes sociales como Facebook, buscan que los seres humanos busquen “ser aceptados”, “ser populares”, “ser famosos” pero sin tener actos valiosos para la sociedad.
El 8 de abril será la fecha clave y también será la primera vez que se intente volar un dispositivo en otro planeta.
El hombre antiguo estuvo “muy cerca” de hallar el área del círculo. Sin embargo, como nos enseñaron en “las buenas escuelas”, el área del círculo con radio uno es un número irracional con un número infinito de dígitos que no son periódicos.
En México hay aproximadamente dos mil especies de abejas nativas. A diferencia de las melíferas, que viven en colonias (colmenas) con su reina y obreras, la mayoría de las nativas son solitarias.
La influencia que han ejercido las ideas de Platón (Atenas, 429-347 a. C.) en la mente de los matemáticos perdura hasta nuestros días. Matemáticos contemporáneos como G. H. Hardy y Kurt Gödel son declarados platonistas.
Luego de que El Universal publicara el documento que evidencian la postura del Conacyt, este organismo publicó un “aviso informativo” donde acusa al periódico de manipular la información.
El informe #ChatarraInfluencer revela que a nivel mundial, la industria de comida aumentó 58% su gasto en redes sociales para promocionar su mercancía.
Esta herramienta prescinde de las cuerdas vocales y restaura el habla ofreciendo esperanza para pacientes con trastornos de la voz.
¡Sí o sí! CURP Biométrica será obligatoria a partir de 2026, pese a riesgo de hackers
¿Y Adán Augusto López? Morena desconoce el paradero de su coordinador parlamentario
Felipe Esparza, paciente con enfermedad rara, es víctima del desabasto de medicamentos en el ISSSTE
China prohíbe OnlyFans por "tolerancia cero" con el contenido sexual explícito
Más cobros, más ganancias: Afores recaudan 19 mil mdp por comisiones
Prevalece abuso sexual infantil en CDMX; Iztacalco concentra el mayor número de casos
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador