Cargando, por favor espere...

La conceptualización de la matemática (I de II)
El sustento del conocimiento matemático se desarrolló en la antigua Grecia; uno de los filósofos que contribuyó a su desarrollo fue Aristóteles, quien planteó las leyes básicas del pensamiento humano a fin de obtener deducciones válidas.
Cargando...

En este capítulo nos introduciremos brevemente al desarrollo del pensamiento matemático y su estructura. El sustento del conocimiento matemático es el pensamiento hipotético-deductivo, que se desarrolló en la antigua Grecia; uno de los filósofos de la antigüedad que contribuyó a este desarrollo fue Aristóteles (384-322 a.C.), quien planteó las leyes básicas del pensamiento humano a fin de obtener deducciones válidas; estas leyes básicas son: 1) El principio de identidad, afirma que si un enunciado es verdadero, entonces es verdadero. 2) El principio de no contradicción, afirma que ningún enunciado puede ser verdadero y falso a la vez. 3) El principio del tercero excluido, afirma que un enunciado es verdadero o falso, no existen más posibilidades.

La lógica aristotélica parte del supuesto de que los procesos cognitivos reproducen lo que ocurre en la realidad objetiva, o sea, que las cosas extramentales existen tal como son pensadas por la mente humana. El ser humano internaliza el conocimiento a partir de las cosas que observa y experimenta, bajo esta perspectiva se desarrolló la matemática griega.

En matemática existen dos elementos básicos en su estructura, los conceptos y el método axiomático formal. El concepto constituye el primer nivel del pensamiento matemático en su forma lógica, con ello reflejamos las cualidades genéricas y esenciales de los objetos y fenómenos de la realidad. En matemática, los objetos son mentales; y los matemáticos crean o inventan sus propios objetos de estudio.

Por ejemplo, el concepto de número natural nace de la coordinación del conjunto de objetos materiales, tales como los dedos de las manos, las piedras para contar el número de ovejas de un rebaño, etc., donde la propiedad genérica reflejada mentalmente es la cantidad de los objetos, los números naturales solo existen a nivel conceptual en la mente humana, no son susceptibles de ser percibidos por nuestros sentidos. Esto indica que ningún ser humano puede ver, oler o tocar algún número natural; además, estos objetos matemáticos creados cognitivamente no interactúan con los seres humanos. A menudo, los conceptos matemáticos se relacionan o encadenan con otros conceptos más elementales.

Para los conceptos más elaborados, por ejemplo, el concepto de número par o impar, igualdad, etc.,se tiene un mecanismo que nos permite precisar este concepto, describiendo de manera lógica y sin ambigüedades las propiedades o relaciones que tienen los objetos, este mecanismo es llamado definición. Una definición matemática es una descripción precisa de las características esenciales de los objetos y fenómenos y abarca un concepto y muestra sus relaciones con otros conceptos más generales.

El edificio matemático que se va construyendo a partir de estos conceptos (definibles o no) y a través de afirmaciones evidentes que los griegos llamaron postulados o axiomas; por ejemplo, dos puntos determinan una recta, para luego pasar a construir el conocimiento matemático con afirmaciones que necesitan una deducción lógicamente rigurosa (demostraciones) para ser aceptadas, los griegos las llamaron teoremas, lemas, corolarios, etc., según el grado de importancia que tenían.

En la actualidad, un sistema axiomático formal lo constituyen términos primitivos (no definibles), axiomas (preestablecidos) y deducciones (teoremas) sujetos a reglas de inferencia. Actualmente existen distintos sistemas axiomáticos formales que fundamentan casi toda la matemática inventada por el ser humano; sin embargo, el sistema de Zermelo-Franklin es hoy en día el más aceptado. Ver el libro Una axiomatización de la teoría de conjuntos escrito por Esptiben Rojas, en el que se hace un estudio detallado de tal sistema.

En todas las ramas de la Física, la Química, la Biología y, en general, en todas las disciplinas científicas y aún en las humanidades y ciencias sociales se trata de establecer una sistematización, consistente en un encadenamiento y ordenación lógica de los conceptos y proposiciones que las constituyen, de manera que una proposición o concepto posterior esté lógicamente fundamentado en las anteriores; en esta ordenación hay un grupo primario de proposiciones y conceptos. Lo anterior nos indica que estas disciplinas tratan de estructurarse conforme al método axiomático formal o, en otras palabras, tienden a matematizarse, revelando indiscutiblemente la potencia e importancia de la matemática para el desarrollo del conocimiento humano. Un sistema de axiomas debe tener tres características esenciales: compatibilidad, independencia y completitud (idealmente).


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

Svante Pääbo logró secuenciar el ADN de los neandertales, la especie de homínido más emparentada con los seres humanos actuales, y que se extinguió hace 30 mil años.

El eclipse solar total será el próximo 8 de abril.

Los problemas personales no afectaron su brillante carrera académica; su jornada incluía largas horas de concentración.

La situación del campo mexicano es compleja y demanda una intervención integral. Los pequeños productores, ejidatarios, comuneros, propietarios privados y comunidades indígenas requieren apoyo urgente.

No dormir provoca que el cerebro elimine una cantidad significativa de neuronas, así como una perdida significativa de conexiones sinápticas; lo peor, la recuperación del sueño sería incapaz de revertir el daño.

Explicaron que la levitación magnética sucede cuando un objeto es suspendido en el aire.

La gran pasión científica de Pierre Laplace era establecer matemáticamente la estabilidad de nuestro sistema solar; para ello, se propuso aplicar las leyes de la gravitación de Newton y explicar ciertas perturbaciones observadas en Saturno y Júpiter cuand

En nuestro país, el uso indiscriminado de fertilizantes químicos en la actividad agrícola se ha vuelto muy importante debido al empobrecimiento de los suelos.

Luego de que El Universal publicara el documento que evidencian la postura del Conacyt, este organismo publicó un “aviso informativo” donde acusa al periódico de manipular la información.

Los resultados matemáticos de Gödel han causado una grieta en el conocimiento matemático, misma que hoy tiene consecuencias filosóficas profundas.

Si el país tuviera los medios para aprovechar sustentablemente su vegetación, podría cosechar el equivalente a 56 mil 126 millones de pesos.

“No creo que quienes nunca lo escucharon puedan darse cuenta de lo magnífica que fue la enseñanza de Hermite; desbordante de entusiasmo por la ciencia, que parecía cobrar vida en su voz y cuya belleza nunca dejaba de comunicarnos".

El mal manejo, la extracción ilegal y la mala información, así como los mitos y el desarrollo turístico, han llevado a pérdidas importantes en el número de poblaciones de la cacerolita de mar.

Así como un deportista ama su actividad, lo encuentra entretenido, le gusta y goza, de igual manera un matemático, con sus objetos de estudio, ama intrínsecamente la disciplina, muchas veces sin esperar utilidad.

El inicio de la rigurosidad en el pensamiento matemático es obra del gran maestro Weierstrass, quien, entre otras atribuciones, estableció la existencia de una curva continua sin tangentes, sorprendiendo a los analistas de su época.