Cargando, por favor espere...

La génesis de la teoría de conjuntos (primera parte)
Toda la matemática clásica, desde la época de los griegos, se construyó evitando considerar un infinito actual, aunque de manera subliminal siempre se ha usado. Aquí te explico.
Cargando...

La idea de conjunto siempre ha estado presente en el trabajo matemático, Euclides (III a.C.) decía: “para toda cantidad de números primos existe uno mayor”; para evitar referirse a que el conjunto de números primos es infinito y poder concebirlo como un todo. Para los griegos, era paradójico concebir que un segmento de recta de longitud finita, que contiene una infinidad de puntos (cada uno de medida cero) y que finalmente sumando todas las longitudes de los puntos del segmento dé como resultado cero. Es por ello que los antiguos griegos solo aceptaban el infinito potencial, como aquel infinito que se construía a través de sucesivas operaciones, y no concebían el infinito actual, que es considerar al infinito como un todo.

Toda la matemática clásica, desde la época de los griegos, se construyó evitando considerar un infinito actual, aunque de manera subliminal siempre se ha usado, por ejemplo, decir que un punto pertenece a una recta, cuando sabemos que el objeto recta es un infinito actual. El infinito potencial, era lo único aceptado hasta el Siglo XIX, en donde el estudio del naciente Análisis Real, fue el iniciador de la llamada Teoría de Conjuntos.

Cronológicamente, la primera idea casi formal de conjunto fue planteada por el matemático alemán Bernhard Riemann (1826-1866), dotado de una extra-ordinaria capacidad intuitiva, entendió la matemática desde el punto de vista más conceptual, que es el de cálculos constructivos, como era la característica de la época. Bernard Riemann en su tesis Doctoral defendida en 1852, basado en el principio de comprensión (a toda propiedad le corresponde una clase o conjunto de objetos que cumplen dicha propiedad) estudia las funciones multivaluadas en el plano complejo, dispositivo que hoy conocemos como Superficie de Riemann, de muestra que tienen dimensión mayor a tres, además de ser una variedad, este último concepto, no muy técnico como lo conocemos ahora, pero que se refiere a la existencia de un objeto abstracto (clase o conjunto) que contienen objetos matemáticos con ciertas propiedades.

Para Bernhard Riemann, las variedades podrían ser continuas o discretas. Esta idea de variedad es el germen de lo que llamamos variedad topológica o diferenciable, dando la posibilidad de introducir distintas distancias en las variedades, que finalmente constituyó lo que hoy día llamamos Variedad Riemanniana.

Esta generalidad de Bernhard Riemann potenció la idea de trabajar conceptualmente la noción básica de conjunto y crea una nueva metodología de trabajo matemático, que ha permitido un desarrollo potente de la Matemática.

Uno de los primeros resultados dentro de esta nueva metodología lo debemos al teólogo alemán Bernard Bolzano (1781-1848) quien, en 1817, demostró la existencia de extremos inferiores de un conjunto acotado inferiormente.

En 1847, el mismo Bolzano, admitió la existencia del infinito actual, y demostró que dos intervalos compactos (cerrado y acotado) cualquiera, son equipotentes (tienen la misma cantidad de puntos). Además, estableció –sin demostración– que un conjunto infinito contiene un subconjunto equipotente, idea que resultó fundamental para superar los prejuicios que existían alrededor de los conjuntos infinitos.


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

Invadiendo el mundo, es una cinta que exhibe con nitidez escenas racistas sobresalientes como la que provocó la muerte del afroamericano George Floyd en Minneapolis.

En lo que va de 2019 México ha registrado 74 mil 277 casos de dengue, cifra que lo ubica en el cuarto lugar de América Latina, solo después de Brasil (un millón 958 mil 31), Nicaragua (94 mil 513) y Colombia (84 mil 644).

La variedad de ratones transgénicos es muy amplia y, dependiendo de las necesidades de investigación que se requieran, será el tipo de ratón que se utilice.

Por definición, un alimento funcional es aquel que es ingerido de manera regular en la dieta, que además de ser nutritivo, ofrece beneficios para la salud o reduce el riesgo de padecer enfermedades.

Para describir el comportamiento de los fenómenos físicos, biológicos, químicos, sociales o económicos, el hombre recurre, en la mayoría de los casos, a modelos matemáticos para ayudarse a resolver dos tipos de problemas.

El récord del año más cálido pasó de 0.17 grados centígrados en 2016 a 14.98 grados centígrados en 2023.

Su domesticación ha traído casi cien variedades de esta especie, dentro de las que se pueden encontrar plantas con las típicas hojas color verde y escarlata.

Las buenas noticias disparadas desde Palacio Nacional, que pintan a un México próspero y “feliz”, parecen no corresponderse con las estadísticas del INEGI.

Las siete mil 700 millones de personas que hay en la Tierra, aunado al actual modelo de vida consumista y desenfrenado, aceleran las condiciones de cambio climático que estamos enfrentando, como el calor y el frío.

“La extinción de especies es uno de los grandes problemas ambientales y, junto con el cambio climático y un holocausto nuclear, podrían colapsar la civilización”, planteó el ecólogo mexicano Gerardo Ceballos.

La ciencia, para mejores resultados, requiere constancia, equipamiento, infraestructura y recursos suficientes para realizar investigación de calidad.

Ingenuity dispone de dos cámaras, una en blanco y negro para la navegación y otra en color, que está orientada para tomar imágenes del terreno.

Sabemos que la comida nos da energía para tener fuerzas para movernos de un lugar a otro, pero ¿cuántos sabemos cómo es que los músculos pueden funcionar con esta energía? Explico.

¿Por qué algunas personas pueden comprender más fácil el formalismo matemático? ¿Por qué les fluyen ideas matemáticas con mayor facilidad que a otras? Esta increíble mente perteneció a uno de los más enigmáticos en la Historia de la Matemática.

Cada 14 de marzo se celebra el a la Matemática. Esta fecha fue elegida en virtud de que hace alusión a 3.14, que es el valor aproximado del enigmático número Pi (π).