Cargando, por favor espere...
Cuando las limitaciones cognitivas y temporales propias de la especie humana no nos permiten verificar ciertas afirmaciones matemáticas, habitualmente recurrimos a nuestra intuición como una especie de proyección para llegar a lo inalcanzable, por lo tanto, recurrimos a la axiomatización. Cuando no entienden o no pueden cerciorarse bien, los matemáticos axiomatizan, con ello le dan una validez formal a sus afirmaciones, aunque éstas conlleven consecuencias a veces contraintuitivas, como el caso del llamado Axioma de elección, que habitualmente se usa en el trabajo matemático.
Ernst Zermelo (1871-1953) plantea, en 1904, el famoso Axioma de elección, en donde establece la existencia de un conjunto cuyos elementos son extraídos de un conjunto infinito, jugando un poco con la intuición humana. Esta idea ya se había utilizado por otros matemáticos, pero no se encontraba debidamente fundamentada. Ernst Zermelo fue criticado muy duramente por matemáticos de renombre como Lebesgue, Borel, Baire, Hadamad, quienes consideraban que tal función de elección debería ser construida o especificada. Con este Axioma, Ernst Zermelo demuestra que todo conjunto puede ser bien ordenado (entre ellos el conjunto de los números reales) aunque no se muestra cuál es ese orden. Los teoremas de existencia empezaron a ser cuestionados por la comunidad matemática.
Plantearemos la idea de este Axioma:
1.- Evidentemente, si tenemos un número finito de conjuntos diferentes del vacío, en cada conjunto es posible elegir un elemento; esta idea de elegir en cada conjunto diferente del vacío, técnicamente es llamada función de elección. Esta función permite construir un conjunto con los elementos elegidos que es llamado conjunto de elección.
2.- Lo que no es tan evidente es que podamos hacer lo descrito anteriormente si el número de conjuntos diferentes del vacío es infinito. Nuestra temporalidad humana no nos permite verificar que es posible elegir. Sin embargo, apelando a nuestra intuición humana, es plausible afirmar que sí es posible realizarlo y, por lo tanto, generar un conjunto de elección.
El paradigma del formalismo en donde estamos inmersos los matemáticos nos permite decretarlo a través de un axioma, denominado Axioma de elección.
En la práctica matemática, cuando escogemos un representante de una clase de equivalencia, lo hacemos con fundamento en el Axioma de elección. Con este axioma se prueban resultados importantes en la matemática, por ejemplo, que todo espacio vectorial tiene una base, todo conjunto es bien ordenado, los famosos teoremas de Hann – Banach, etc.
Si bien es cierto que la gran mayoría de matemáticos acepta este axioma, existe otro grupo de matemáticos que lo cuestiona, sobre todo los matemáticos de la escuela intuicionista, para quienes no basta decretar la existencia de un objeto matemático, sino que es indispensable construirlo, si no hay construcción, no hay existencia. El matemático formalista acepta este axioma sin mayor objeción, puesto que se permite inventar algún axioma, como regla de juego inicial, lo importante para el formalista es que no entre en contradicción con otros axiomas. En este sentido, la axiomática de Zermelo-Fraenkel es la más difundida para fundamentar casi toda la matemática (con base en la teoría de conjuntos); no entra en contradicción con el Axioma de elección. Este resultado fue probado con los trabajos de Kurt Gödel y Paul Cohen que demuestran que el Axioma de Elección es lógicamente independiente de los otros axiomas de la teoría axiomática de conjuntos.
La aceptación del Axioma de elección implica algunos resultados sorprendentes, como la existencia de conjuntos no medibles dentro de la recta o del plano; que trae como consecuencia paradojas tan extrañas como la paradoja de Tarski-Banach, según la cual podemos descomponer una esfera maciza en una serie de ocho piezas de modo que al reconstruirla tengamos una esfera de tamaño doble de la anterior. De otro lado, la independencia de este axioma con otros axiomas de la teoría trae como consecuencia que, aunque tengamos un axioma que entre en contradicción con el Axioma de
elección, no conlleve una contracción posterior; por lo tanto, la demostración por el absurdo no es operatizable en este contexto.
La superación de la que habla Marx no niega por completo lo anteriormente construido por la tradición, sino que lo integra y, en algunos casos, lo supone. Aquí lo explico.
Si los campesinos quieren mejorar sus condiciones se debe insistir en la tecnificación del campo mexicano, en la menor dependencia de países extranjeros, en la tecnificación agrícola y...
“El financiamiento es la columna vertebral de un sistema nacional de ciencia, tecnología e innovación. Desde aquí se aplican las políticas públicas, se incentiva o se corrige".
La fascinación por el reino vegetal siempre ha despertado el interés de diferentes personas.
Desde el punto de vista biológico, el envejecimiento humano es la acumulación de diversos daños celulares y moleculares a lo largo del tiempo, lo que lleva a un descenso gradual de las capacidades físicas y mentales.
Cuántas veces hemos tenido la duda de si tomar un medicamento alopático o un té para curar algún malestar o disminuir el síntoma de una enfermedad.
La reducción de la mariposa monarca en bosques mexicanos, las cuales ocuparon 2.10 hectáreas de terreno -en el primer trimestre del 2021-, respecto a las 2.83 hectáreas registradas en 2019.
Arquímedes se había adelantado a los matemáticos de mediados y último tercio del Siglo XVII como Cavalieri, Pascal, Newton y Bernoulli.
Este gran matemático e inventor, dedicó sus últimos años a la docencia en la Biblioteca de Alejandría, sus obras están escritas al estilo de notas de clase de distintos temas: mecánica, geometría, óptica.
Los conjuntos han estado presentes desde nuestros primeros años, como consecuencia del paradigma formalista de D. Hilbert y la influencia del grupo Bourbaki en la enseñanza de la matemática desde mediados del Siglo XX.
AMLO olvida que el desarrollo económico de un país está directamente relacionado con las inversiones en la investigación y la producción de ciencia y tecnología.
La participación de las mujeres en el desarrollo de las matemáticas ha sido escasa, comparada con la de los hombres
“Estamos ante la presencia del gobierno que intenta ver como accidentes, lo que más bien han sido tragedias provocadas por la ausencia de mantenimiento”, denunció Andrés Atayde, presidente del PAN.
Este filme aborda la vida de la científica marina Sophia (Berenice Bejo), quien se dedica a estudiar el comportamiento de la especie más depredadora de los océanos: el tiburón blanco.
Este sistema de producción agrícola forma un hábitat para la biodiversidad acuática de la zona y brinda un paraje paisajístico para residentes y turistas.
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador