Cargando, por favor espere...
Cuando las limitaciones cognitivas y temporales propias de la especie humana no nos permiten verificar ciertas afirmaciones matemáticas, habitualmente recurrimos a nuestra intuición como una especie de proyección para llegar a lo inalcanzable, por lo tanto, recurrimos a la axiomatización. Cuando no entienden o no pueden cerciorarse bien, los matemáticos axiomatizan, con ello le dan una validez formal a sus afirmaciones, aunque éstas conlleven consecuencias a veces contraintuitivas, como el caso del llamado Axioma de elección, que habitualmente se usa en el trabajo matemático.
Ernst Zermelo (1871-1953) plantea, en 1904, el famoso Axioma de elección, en donde establece la existencia de un conjunto cuyos elementos son extraídos de un conjunto infinito, jugando un poco con la intuición humana. Esta idea ya se había utilizado por otros matemáticos, pero no se encontraba debidamente fundamentada. Ernst Zermelo fue criticado muy duramente por matemáticos de renombre como Lebesgue, Borel, Baire, Hadamad, quienes consideraban que tal función de elección debería ser construida o especificada. Con este Axioma, Ernst Zermelo demuestra que todo conjunto puede ser bien ordenado (entre ellos el conjunto de los números reales) aunque no se muestra cuál es ese orden. Los teoremas de existencia empezaron a ser cuestionados por la comunidad matemática.
Plantearemos la idea de este Axioma:
1.- Evidentemente, si tenemos un número finito de conjuntos diferentes del vacío, en cada conjunto es posible elegir un elemento; esta idea de elegir en cada conjunto diferente del vacío, técnicamente es llamada función de elección. Esta función permite construir un conjunto con los elementos elegidos que es llamado conjunto de elección.
2.- Lo que no es tan evidente es que podamos hacer lo descrito anteriormente si el número de conjuntos diferentes del vacío es infinito. Nuestra temporalidad humana no nos permite verificar que es posible elegir. Sin embargo, apelando a nuestra intuición humana, es plausible afirmar que sí es posible realizarlo y, por lo tanto, generar un conjunto de elección.
El paradigma del formalismo en donde estamos inmersos los matemáticos nos permite decretarlo a través de un axioma, denominado Axioma de elección.
En la práctica matemática, cuando escogemos un representante de una clase de equivalencia, lo hacemos con fundamento en el Axioma de elección. Con este axioma se prueban resultados importantes en la matemática, por ejemplo, que todo espacio vectorial tiene una base, todo conjunto es bien ordenado, los famosos teoremas de Hann – Banach, etc.
Si bien es cierto que la gran mayoría de matemáticos acepta este axioma, existe otro grupo de matemáticos que lo cuestiona, sobre todo los matemáticos de la escuela intuicionista, para quienes no basta decretar la existencia de un objeto matemático, sino que es indispensable construirlo, si no hay construcción, no hay existencia. El matemático formalista acepta este axioma sin mayor objeción, puesto que se permite inventar algún axioma, como regla de juego inicial, lo importante para el formalista es que no entre en contradicción con otros axiomas. En este sentido, la axiomática de Zermelo-Fraenkel es la más difundida para fundamentar casi toda la matemática (con base en la teoría de conjuntos); no entra en contradicción con el Axioma de elección. Este resultado fue probado con los trabajos de Kurt Gödel y Paul Cohen que demuestran que el Axioma de Elección es lógicamente independiente de los otros axiomas de la teoría axiomática de conjuntos.
La aceptación del Axioma de elección implica algunos resultados sorprendentes, como la existencia de conjuntos no medibles dentro de la recta o del plano; que trae como consecuencia paradojas tan extrañas como la paradoja de Tarski-Banach, según la cual podemos descomponer una esfera maciza en una serie de ocho piezas de modo que al reconstruirla tengamos una esfera de tamaño doble de la anterior. De otro lado, la independencia de este axioma con otros axiomas de la teoría trae como consecuencia que, aunque tengamos un axioma que entre en contradicción con el Axioma de
elección, no conlleve una contracción posterior; por lo tanto, la demostración por el absurdo no es operatizable en este contexto.
La pobreza y la marginación social son la principal causa del incremento de enfermedades relacionadas con la nutrición.
Ahora se sabe que la homosexualidad está presente en todo el mundo natural, desde los seres vivos más sencillos hasta los más complejos. Protozoarios, algas, plantas, animales invertebrados y vertebrados poseen comportamientos homosexuales.
El pasado tres de febrero, otro golpe brutal a la naturaleza tuvo lugar en Ohio, cuando un tren con sustancias peligrosas se descarriló y liberó gases venenosos; 14 de sus 150 vagones contenían 100 mil litros de cloruro de vinilo.
Esta red impulsará la creación de ciudades inteligentes y permitirá realizar cirugías a distancia
El cuerpo humano en la edad adulta tiene aproximadamente 50 trillones de células vivas que cumplen funciones específicas dentro del organismo.
En este artículo defenderemos, desde la dimensión antropológica de la matemática, una de las afirmaciones que han concitado discusiones entre matemáticos y filósofos.
Mientras el trabajo matemático tiene reglas, axiomas, y su libertad está en función de estar gobernado por sistemas formales; en el trabajo filosófico...
El club de los matemáticos está constituido por un conjunto de seres humanos con alta formación matemática y capaces de inventar nuevos teoremas.
Cavalieri y Torricelli, matemáticos que hicieron historia en su tiempo.
Fermat nunca publicó un artículo matemático, todos sus aportes eran mediante cartas personales, sin embargo sus conjeturas fueron importantes para el desarrollo matemático.
La secuenciación del genoma del cacao ha abierto nuevas fronteras en la mejora de la calidad y sostenibilidad del cultivo de cacao.
Si reflexionamos sobre nuestra situación antes de la pandemia, podremos darnos cuenta que ya estábamos enfermos cuando llegó el SARS-CoV-2.
Los artrópodos fueron el grupo más abundante desde que la vida animal apareció en la Tierra
La tortilla es rica en probióticos y prebióticos, y no contiene conservadores artificiales, lo que mejora su sabor.
La datación de las rocas es milenaria, surgieron de eventos geológicos en la génesis del sistema solar. Las capas terrestres de los primeros elementos de polvo estelar que formaron los planetas hace cuatro mil 500 millones de años.
La urgencia de un sindicalismo independiente en México
Tortura en academia militar provoca muerte de un menor
La niñez mexicana, entre la violencia y el abandono gubernamental
Putin decreta tregua de 72 horas con Ucrania por el “Día de la Victoria”
Con colores de Morena, promueven ilegalmente elección del 1 de junio
Tardará INE 10 días en conteo de votos de elección judicial
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador