Cargando, por favor espere...

Razón áurea y su implicación
Hoy sabemos que forma parte de los números irracionales y que es un número algebraico, al ser solución de una ecuación algebraica.
Cargando...

De acuerdo con la investigación efectuada por el matemático ruso Georg Cantor, los números irracionales son los más abundantes en la naturaleza matemática, por encima de los naturales, enteros y racionales. En la lista infinita de números irracionales se encuentra la razón áurea, una constante irracional que se obtiene a partir de la división proporcional de un segmento de la siguiente manera: suponga que tiene usted un segmento de longitud x. Divida este segmento en dos partes no iguales, en a y b donde, por ejemplo, a puede ser la mayor y b la menor. Si la proporción de la longitud a con relación a la longitud b es la misma que la existente entre x=a+b y a, entonces la línea x ha sido cortada en media y extrema razón; es decir, a/b=(a+b)/a=1+b/a. Ahora, haciendo s =a/b y, ejercitando un poco el cerebro con una operación aritmética, se tiene que s2-s-1=0. Al resolver esta ecuación cuadrática llegamos al siguiente resultado: . La solución positiva recibe el nombre de razón áurea, una razón que se obtiene también a partir de la sucesión de Fibonacci (1, 1, 2, 3, 5, 8, 13, 21, etc.) dividiendo cada número por su anterior.

Para estudiar el origen e historia de este número áureo, se recomienda el libro La proporción áurea, la historia del Phi, el número más sorprendente del mundo, escrito por el director de la División de Ciencias de Hubble Space Telescope Science Institute. El autor comienza la historia de la razón áurea, buscando patrones matemáticos usados en la construcción de las tumbas para los faraones egipcios y sumerios. Posteriormente, orienta su investigación hacia la arquitectura de las pirámides construidas por los ingenieros antiguos, hasta encontrar pruebas escritas en el tratado Los elementos, de Euclides, quien realizó un estudio formal del número áureo.

Euclides de Alejandría escribió en la definición tres del Libro VI : “una recta ha sido cortada en extrema y media razón, cuando la recta entera es al segmento mayor, como el segmento mayor es al segmento menor”. Esta afirmación es la misma que acabo yo de escribir más arriba. El mismo genio de Alejandría demostró, además, que la razón a/b no podía escribirse como razón de dos números enteros, es decir, no podía ser un número racional.     

Rápidamente, aquel número “divino” encontró utilidad en las actividades prácticas de los pintores, matemáticos y músicos. Por ejemplo, el pintor Alberto Durero usó esta razón para construir su espiral, conocido actualmente como espiral de Durero, que sirve para profundizar la investigación sobre las conchas, hileras de piñones en la piña, semillas de una flor de girasol, etc. El astrónomo Kepler, por su parte, usó la proporción áurea para desarrollar un modelo platónico del sistema solar. Se sabe que, con esa razón, el astrónomo alemán construyó su famoso triángulo conocido como triángulo de Kepler: “la relación entre los catetos y la hipotenusa es igual a la proporción áurea”. El compositor francés Achille-Claude Debussy usó esa razón para componer los 55 compases de la introducción del Tercer Movimiento de La Mer, Dialogue du vent et la mer (El mar, el diálogo del viento y el mar), entre otros compases compuestos por él.

Por la unicidad, inconmesurabilidad, etc., del número irracional Phi, el matemático italiano Luca Pacioli lo bautizó como “sección divina”. Este matemático y teólogo italiano planteó, en 1509, en su obra De Divina Proportione, que dicha proporción tenía carácter de divino porque cumplía fundamentalmente las siguientes razones: unicidad (unicidad de Dios), trinidad (por estar definida de tres segmentos a, b y a+b); inconmensurabilidad (por la inconmensurabilidad de Dios) y la autosimilaridad (por la omnipresencia e invariabilidad de Dios). Desde entonces, esta razón es conocida como sección o proporción divina o áurea.

La sección áurea, como usted, lector, acaba de notar, es un patrón abstraído de la naturaleza mediante la observación y el análisis del hombre hace cientos de años. Hoy sabemos que forma parte de los números irracionales y que es un número algebraico, al ser solución de una ecuación algebraica. Ya formalizada, encuentra aplicaciones en diferentes actividades del hombre como la pintura, música, arquitectura, etc., lo cual demuestra que el desarrollo del conocimiento es en espiral. 


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Noticia anterior
CÉSAR BRAÑAS
Noticia siguiente
El irlandés

Notas relacionadas

La lucha por el control de los datos personales se traduce en la posibilidad de poder económico, político e ideológico. De manera permanente somos vigilados por empresas y funcionarios.

Una empresa estadounidense pretende transportar gas natural licuado (GNL) a Asia, pero las políticas ecológicas estadounidenses le imponen varias restricciones.

En nuestros días, los científicos discuten con gran preocupación el posible aumento, en las futuras generaciones, de enfermedades o males derivados del efecto ambiental catastrófico más grande después de la época de las postguerras.

Niños inquietos e inteligentes como el que me preguntó hay muchos en nuestro país; pero muy pocos son rescatados y apoyados para continuar con sus estudios

El Centro Nacional de Investigaciones Científicas (CNRS) francés sostuvo que en plena selva amazónica descubrió una “extensa red de ciudades de dos mil 500 años de antigüedad”.

El agua es esencial en la generación de imágenes por IA debido al funcionamiento de los centros de datos.

La ANEPPMAC realizó en la UAG un evento deportivo, cultural y científico en el que alumnos de la Escuela Antonio Caso Zapopan consiguieron primeros lugares por sus proyectos.

Hijo de un sastre, huérfano a los ocho años. En 1812 escribió la obra cumbre de su carrera científica, la Teoría Analítica del Calor, por la que ganó un premio de la Academia de Ciencias de París.

Alrededor de 20 especies de ciempiés podrían ser clave en el desarrollo de nuevos tratamientos médicos.

México cerró su participación en el sexto lugar general de 55 naciones participantes.

El Presidente López Obrador desea transformar al modelo educativo actual del CIDE en brazo ideológico de la 4ª T, pero se limita a imponer un director obsecuente sin precisar qué tipo de economía reemplazará al “neoclasisismo” y al “neoliberalismo”.

El 8 de abril será la fecha clave y también será la primera vez que se intente volar un dispositivo en otro planeta.

Aunque la predicción del reconocido científico menciona específicamente a los Estados Unidos, los temas que reflexiona tienen alcance global.

Se ha demostrado que aunque no es un alimento completo por sí solo, los productos comestibles a base de maíz aportan grandes beneficios para la salud humana.

¿Y si existieran tatuajes que detecten cuándo y a qué le ponemos atención; o robots que “colaboran” con trabajadores? Estos avances tecnológicos relacionados con la neurociencia ya existen, pero ¿para qué y qué consecuencias trae a los millones de ciudadanos?