Cargando, por favor espere...
Toda afirmación en matemática es siempre referida a un determinado sistema formal. La afirmación: No existe división por cero se refiere al sistema formal de los números reales con las operaciones usuales de la enseñanza escolar.
Conceptualmente, la operación de dividir un número por otro consiste en saber cuántas veces el segundo número (llamado divisor) está contenido en el primero; por ejemplo, 10 dividido por 5 es 2, puesto que 5 está dos veces contenido en el 10. Formalmente se escribe: 5 x2 = 10, si y sólo si 10/5 = 2.
¿Qué significaría, si el divisor es 0?, en vista que el cero representa la ausencia de cantidad, la contención del cero en cualquier número, simplemente carece de sentido conceptual. Sin embargo, aunque es una justificación plausible del por qué no es posible dividir por cero, no constituye una afirmación que haya sido demostrada dentro del sistema formal de los números reales.
En matemática, una afirmación está sustentada en otra afirmación y esta afirmación en otra y así sucesivamente, llegando finalmente a los axiomas, que definen el sistema formal usado. En este caso, es suficiente saber (o haber probado) que cualquier número real multiplicado por 0 da como resultado 0. La prueba de que no existe división por cero es muy simple: usamos el viejo razonamiento de los griegos: supongamos que, si es posible, para llegar a una contracción (método por el absurdo), veremos:
Dado un número real diferente de cero , supongamos que existe un número real k tal que /0=k luego =0xk, lo cual es absurdo, puesto que todo número real multiplicado por cero debe dar cero.
¿Qué pasa si =0? Se tendría que para cualquier k se cumple 0xk=0: luego no tendríamos un resultado único de la división, y por lo tanto esta operación no estaría bien definida matemáticamente.
En conclusión, la división por cero ni conceptualmente ni formalmente es posible realizarla dentro del sistema formal de los números reales.
En algunos textos (a veces de profesores) se afirma que la división por cero da infinito, simbolizado por /0=∞. Es un error conceptual enorme, puesto que ∞ no representa un número; es un símbolo que expresa una cantidad arbitrariamente grande y tampoco tiene sentido escribir /0. El proceso operatorio con una cantidad arbitrariamente grande o arbitrariamente pequeña (por ejemplo, acercarse infinitamente al 0) sólo tiene una realización formal (matemática) a través del concepto y definición del límite de funciones, y es lo que se maneja en la matemática escolar. Una realización material o cognitiva de esta operación está fuera del alcance humano.
Estos errores y otros ayudan poco a la comprensión cabal del conocimiento matemático que comúnmente, en el ámbito escolar, lo reducen a la operatividad. La matemática es un conjunto de sistemas formales conceptualmente interpretados, de ello resultan técnicas y procedimientos, pero también teoremas que enriquecen su contenido. Reducir la matemática a las técnicas prácticas (generando lo que muchos llaman un lenguaje) es desconocer la esencia del conocimiento matemático y del trabajo matemático que establece ideas, conexiones e interpretaciones conceptuales, para luego formalizar y descubrir propiedades, belleza intrínseca, un mundo fascinante: la invención más grande del intelecto humano.
En el ámbito escolar muchas veces se aceptan afirmaciones (por ejemplo, lo que hemos tratado en este artículo) sin mayor justificación o análisis, incurriendo en imprecisiones, y dudas escolares. La formación matemática del profesor es esencial para un discurso sólido y fundamentado, la claridad en la exposición es fundamental.
Dentro de la matemática, existen escenarios en donde es posible la división por el neutro de la operatoria, es un mundo fascinante del álgebra abstracta; incluso el infinito ( es incluido en los números reales, ampliando su riqueza conceptual. Existen realizaciones geométricas (por ejemplo, la geometría proyectiva) que lo incluyen, generando nuevos sistemas formales en donde emergen propiedades muy interesantes y con conexiones fascinantes.
La teoría de la medida es una parte de la matemática contemporánea.
El tránsito hacia una matemática filosófica exige iniciar una quinta revolución matemática; para ello, el estudio de la historia desde el hacer de un matemático es fundamental.
Matemático universal, capaz de conectar las ecuaciones diferenciales y el álgebra abstracta.
El alejamiento de Alexander Grothendieck del mundo académico empezó en 1973, cuando decidió abandonar París y se estableció en un pequeño pueblo (Villecun) de Montpellier.
De todas las ciencias, probablemente es la matemática la que no tiene una definición precisa de su contenido.
Dios creó a los números es el titulo de una de las obras más importantes del gran científico y divulgador Stephen Hawking.
La tenacidad en su trabajo le acompañó hasta una edad muy avanzada.
Un grupo de brillantes matemáticos franceses, autodenominado Bourbaki desarrolló, desde las primeras décadas del Siglo XX, un programa fundacional de la matemática con gran influencia en el trabajo matemático contemporáneo.
En la novela Los crímenes de Oxford, su autor, el doctor en Matemáticas y escritor argentino Guillermo Martínez, es un ejemplo de convergencia de estas dos áreas aparentemente disímiles: matemáticas y literatura.
Fue nombrado miembro de la Real Academia de Ciencias Exactas, Físicas y Naturales en 1983; entre 1991 y 1993 fue presidente de la Comisión Internacional de Instrucción Matemática (ICMI).
En la primera mitad del Siglo XX aparece el fenómeno de la masificación de la educación matemática, periodo en que la matemática entra en la revolución del formalismo hilbertiano.
El pensamiento lógico en el ser humano es una característica antropológica formada en el cerebro humano por miles de años de evolución.
Félix Klein y su Programa Erlangen
En la ruleta los resultados son equiprobables, no hay predilección por ningún número o color.
Esta medalla tiene la imagen del matemático griego Arquímedes y una inscripción que dice “Trascenderse a uno mismo y dominar el mundo”.
Dos muertos y decenas de desaparecidos, tras el paso del huracán Erick
Rusia y China condenan ataques de Israel a Irán
Jueces y magistrados aún sin validar por falta de requisitos académicos
Pemex compromete estabilidad fiscal
Batres revienta sesión de la SCJN y evita votación para deducción fiscal a Pegaso
Por desabasto de medicamentos, anuncian múltiples manifestaciones en el país
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador