Cargando, por favor espere...

¿Por qué casi todos los matemáticos son platonistas?
La influencia que han ejercido las ideas de Platón (Atenas, 429-347 a. C.) en la mente de los matemáticos perdura hasta nuestros días. Matemáticos contemporáneos como G. H. Hardy y Kurt Gödel son declarados platonistas.
Cargando...

La influencia que han ejercido las ideas de Platón (Atenas, 429-347 a. C.) en la mente de los matemáticos perdura hasta nuestros días. Matemáticos contemporáneos como G. H. Hardy, Kurt Gödel, Roger Penrose, etc., son declarados platonistas.

Para Platón, el mundo real es el mundo de las ideas; todos nacemos con los conceptos de esas formas ideales en la mente. Sostiene que vivimos en un mundo ilusorio de nuestros sentidos que solo contiene formas imperfectas de esas formas ideales. Platón usa la matemática para probar que la razón, y no los sentidos, es lo que nos permite alcanzar el verdadero conocimiento. El razonamiento lleva a Platón a una conclusión única: la existencia de un mundo de ideas, o formas distintas al mundo material, en este mundo ideal se encuentran los objetos matemáticos (números, objetos geométricos, etc.), también se encuentra la ética, la justicia, el bien, el mal, etc. Establece que los sentidos humanos no pueden percibir directamente el mundo de las ideas el cual es solo perceptible mediante la razón.

Para Platón, este mundo de ideas es la realidad y todo lo que nos rodea es una imitación; por ejemplo, si percibimos un cuadro rectangular con nuestros sentidos, aquéllo es una imitación o apariencia de la idea de rectángulo, en este mundo de las ideas, los objetos son eternos e inmutables. Esta concepción filosófica establece que los objetos matemáticos existen fuera del ser humano y solo se accede a ellos por la razón; por lo tanto, cuando un matemático establece un teorema, suele pensar que solo ha descubierto lo que ya existe en el mundo de las ideas de Platón. También es característico del platonista que, cuando percibe materialmente objetos que se parecen o tienen la forma de algún objeto matemático, suele identificarlos con el objeto matemático real. Esta confusión es muy común en los matemáticos, la emoción que sienten cuando ven un objeto material, aunque saben que no es el objeto matemático que ellos estudian, lo identifican como si lo fuera.

Desde nuestro punto de vista, creer en la existencia del mundo de las ideas, y darles el estatus de realidad, es lo que no compartimos con Platón. Desde el punto de vista platónico debemos creer que en ese mundo también deben encontrarse objetos abstractos más actuales, como los sistemas formales, los conjuntos, las categorías, los funtores etc.; además, pensar que todos los teoremas o futuros teoremas ya están en ese mundo y solo es cuestión de descubrirlos, no tiene un asidero lógicamente demostrable.

Ante la pregunta ¿por qué casi todos los matemáticos son platonistas? Debemos decir que Platón ha contribuido a la educación estrictamente formalista del matemático y que ha eliminado la reflexión crítica de su propio quehacer, es decir, la eliminación de cursos de historia y filosofía de la matemática en su formación.

Una formación histórico-filosófica de la matemática no solo ayudaría a establecer un panorama de su propia investigación, sino también identificaría los problemas más importantes a resolver en su línea de investigación. Así se contribuiría de manera seria en el desarrollo de la disciplina.

En el quehacer matemático, los objetos que trabaja un matemático en la actualidad, los inventa; de hecho, es el único científico al que no se le dan objetos de estudio, él mismo los inventa para ciertos propósitos, lo que Gustavo Romero llama artefactos conceptuales. Decir que existe un mundo en el que están los objetos matemáticos y solo hay que descubrirlo no es racionalmente creíble; sin embargo, si hacemos una pequeña observación en el lugar en donde aparecen o inventan estos objetos, generalmente en un papel o pizarra, vemos que bajo el cerebro humano los va inventando, materializando características conceptuales, en donde emergen propiedades, lemas, teoremas, etc. Los objetos geométricos dibujados, gráficos, esquemas, etc., son solo parte de la matemática si existe un cerebro matemático que los interprete conceptualmente; de lo contrario, solo podrían ser dibujos, obras de arte o cualquier realización material. La matemática no está fuera del ser humano, sino dentro del cerebro humano, como un constructo mental. Si los seres humanos desaparecemos, con nosotros desaparece también la matemática, todo lo demás puede quedar.


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

La pandemia del Covid-19 es la primera advertencia de un cambio ecológico global al que nos acercamos peligrosamente.

Robot supuestamente harto de trabajar decidió terminar con su existencia

Uno de los grandes matemáticos con espíritu de poeta fue el inglés James Joseph Sylvester, quien fue dotado de una extraordinaria intuición matemática y de una gran sensibilidad poética, ya que logró conectar las ideas matemáticas con la poesía.

La gran pasión científica de Pierre Laplace era establecer matemáticamente la estabilidad de nuestro sistema solar; para ello, se propuso aplicar las leyes de la gravitación de Newton y explicar ciertas perturbaciones observadas en Saturno y Júpiter cuand

Como los animales de carga, nuestra rutina diaria se limita a dormir, alimentarnos y trabajar.

Se ha demostrado que aunque no es un alimento completo por sí solo, los productos comestibles a base de maíz aportan grandes beneficios para la salud humana.

Ingenuity dispone de dos cámaras, una en blanco y negro para la navegación y otra en color, que está orientada para tomar imágenes del terreno.

Los genes son los responsables de la conformación del genotipo

La deficiencia o error no está en el modelo matemático que se está usando, sino en la metodología implementada, en la recopilación de información y en los cálculos aritméticos.

La historia de esa constante comenzó desde que el hombre tuvo necesidad de construir pirámides con bases circulares y cilíndricas, como lo demuestran los papiros de Ahmes y Moscú.

Durante la última década en el Reino Unido, se han identificado 19 nuevos mecanismos genéticos de resistencia en bacterias.

Los modos del pensamiento matemático influyen en su hacer, el Siglo XX ha sido testigo de al menos dos formas de este hacer, con marcada influencia ideológica.

Antes se creía que el parecido entre los fósiles y los seres vivos era gracias a un espíritu animador o vegetativo. Fue gracias al médico Niels Steensen que se reconoció la pertenencia de fósiles a seres vivos.

Entre los hallazgos se identificaron decenas de moluscos, tres peces y un camarón, además de una enigmática criatura que desconcertó a los científicos.

Groenlandia es un país autónomo que, paradójicamente, pertenece al reino de Dinamarca y controla su política exterior y monetaria.