Cargando, por favor espere...

¿Por qué casi todos los matemáticos son platonistas?
La influencia que han ejercido las ideas de Platón (Atenas, 429-347 a. C.) en la mente de los matemáticos perdura hasta nuestros días. Matemáticos contemporáneos como G. H. Hardy y Kurt Gödel son declarados platonistas.
Cargando...

La influencia que han ejercido las ideas de Platón (Atenas, 429-347 a. C.) en la mente de los matemáticos perdura hasta nuestros días. Matemáticos contemporáneos como G. H. Hardy, Kurt Gödel, Roger Penrose, etc., son declarados platonistas.

Para Platón, el mundo real es el mundo de las ideas; todos nacemos con los conceptos de esas formas ideales en la mente. Sostiene que vivimos en un mundo ilusorio de nuestros sentidos que solo contiene formas imperfectas de esas formas ideales. Platón usa la matemática para probar que la razón, y no los sentidos, es lo que nos permite alcanzar el verdadero conocimiento. El razonamiento lleva a Platón a una conclusión única: la existencia de un mundo de ideas, o formas distintas al mundo material, en este mundo ideal se encuentran los objetos matemáticos (números, objetos geométricos, etc.), también se encuentra la ética, la justicia, el bien, el mal, etc. Establece que los sentidos humanos no pueden percibir directamente el mundo de las ideas el cual es solo perceptible mediante la razón.

Para Platón, este mundo de ideas es la realidad y todo lo que nos rodea es una imitación; por ejemplo, si percibimos un cuadro rectangular con nuestros sentidos, aquéllo es una imitación o apariencia de la idea de rectángulo, en este mundo de las ideas, los objetos son eternos e inmutables. Esta concepción filosófica establece que los objetos matemáticos existen fuera del ser humano y solo se accede a ellos por la razón; por lo tanto, cuando un matemático establece un teorema, suele pensar que solo ha descubierto lo que ya existe en el mundo de las ideas de Platón. También es característico del platonista que, cuando percibe materialmente objetos que se parecen o tienen la forma de algún objeto matemático, suele identificarlos con el objeto matemático real. Esta confusión es muy común en los matemáticos, la emoción que sienten cuando ven un objeto material, aunque saben que no es el objeto matemático que ellos estudian, lo identifican como si lo fuera.

Desde nuestro punto de vista, creer en la existencia del mundo de las ideas, y darles el estatus de realidad, es lo que no compartimos con Platón. Desde el punto de vista platónico debemos creer que en ese mundo también deben encontrarse objetos abstractos más actuales, como los sistemas formales, los conjuntos, las categorías, los funtores etc.; además, pensar que todos los teoremas o futuros teoremas ya están en ese mundo y solo es cuestión de descubrirlos, no tiene un asidero lógicamente demostrable.

Ante la pregunta ¿por qué casi todos los matemáticos son platonistas? Debemos decir que Platón ha contribuido a la educación estrictamente formalista del matemático y que ha eliminado la reflexión crítica de su propio quehacer, es decir, la eliminación de cursos de historia y filosofía de la matemática en su formación.

Una formación histórico-filosófica de la matemática no solo ayudaría a establecer un panorama de su propia investigación, sino también identificaría los problemas más importantes a resolver en su línea de investigación. Así se contribuiría de manera seria en el desarrollo de la disciplina.

En el quehacer matemático, los objetos que trabaja un matemático en la actualidad, los inventa; de hecho, es el único científico al que no se le dan objetos de estudio, él mismo los inventa para ciertos propósitos, lo que Gustavo Romero llama artefactos conceptuales. Decir que existe un mundo en el que están los objetos matemáticos y solo hay que descubrirlo no es racionalmente creíble; sin embargo, si hacemos una pequeña observación en el lugar en donde aparecen o inventan estos objetos, generalmente en un papel o pizarra, vemos que bajo el cerebro humano los va inventando, materializando características conceptuales, en donde emergen propiedades, lemas, teoremas, etc. Los objetos geométricos dibujados, gráficos, esquemas, etc., son solo parte de la matemática si existe un cerebro matemático que los interprete conceptualmente; de lo contrario, solo podrían ser dibujos, obras de arte o cualquier realización material. La matemática no está fuera del ser humano, sino dentro del cerebro humano, como un constructo mental. Si los seres humanos desaparecemos, con nosotros desaparece también la matemática, todo lo demás puede quedar.


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

Con todos los avances y beneficios que la IA ha aportado a la ciencia, también surgen desafíos y preocupaciones; ahora hay preguntas sobre el papel del científico en este nuevo panorama.

En 2019, las berries fueron el tercer producto agroalimentario más exportado por nuestro país después de la cerveza y el aguacate.

El mundo cambia, la gran honda cósmica se mueve con base en leyes, no en plegarias.

En las siguientes líneas podrán leer sobre el olivo, una de las plantas más representativas que se mencionan en La Biblia. Su primera mención aparece durante el Génesis 8:11.

Es posible crear una matemática filosófica desde el hacer de un matemático que sea realmente relevante y visionaria. Debe de ser una reflexión humanizante, pero a la vez esclarecedora del mundo de las ideas formales.

La bacteria P. luminiscens actuó sobre las heridas de los soldados como un como un antibiótico muy eficaz, lo que explica por qué las heridas fluorescentes sanaban más rápido que las heridas sin la bacteria fluorescente. Seguramente, esta bacteria salvó la vida de varios soldados, ¿cómo pasó?

Escribir es, en un escenario de rapidez y polarización, un acto revolucionario, además, contribuye "a la memoria, la concentración o la asociación de ideas", sostuvo el profesor de Psicología.

El famoso Axioma de elección juega un poco con la intuición humana, ya que demuestra que todo conjunto puede ser bien ordenado, aunque no se muestra cuál es ese orden.

El país no conseguirá la salud ecológica y humana con las buenas intenciones de la Semarnat, porque se necesita voluntad política, mayor presupuesto.

Mirar directamente al Sol durante un eclipse puede causar daños irreversibles en la retina, incluso sin sentir dolor; como sucedió en 1991.

Durante la última década en el Reino Unido, se han identificado 19 nuevos mecanismos genéticos de resistencia en bacterias.

Este extraordinario hombre fue capaz de abordar problemas relevantes de la matemática de su época y hacer aportes trascendentes, abriendo nuevas áreas de investigación que hasta el día de hoy se siguen desarrollando.

El inicio de la rigurosidad en el pensamiento matemático es obra del gran maestro Weierstrass, quien, entre otras atribuciones, estableció la existencia de una curva continua sin tangentes, sorprendiendo a los analistas de su época.

Si existen o no está sujeto a lo que concebimos como realidad, misma que es relativa, existe una realidad capturada por nuestros sentidos y una realidad inventada que sólo existe conceptualmente en la mente humana.

Así como un deportista ama su actividad, lo encuentra entretenido, le gusta y goza, de igual manera un matemático, con sus objetos de estudio, ama intrínsecamente la disciplina, muchas veces sin esperar utilidad.