Cargando, por favor espere...

Tlaixaxiliztli
Más allá de los números naturales (I de II)
Para la antigua cultura griega, los números naturales podían tener dos realizaciones, una como elemento de medición (lo llamaban magnitud) y otra como elemento de conteo.


Para la antigua cultura griega, los números naturales podían tener dos realizaciones, una como elemento de medición (lo llamaban magnitud) y otra como elemento de conteo. En este último solo se consideraban a partir del 2; el 1 no era considerado número y el cero no existía. Para Aristóteles, estos números u objetos son concebidos en potencia, es decir, conjuntos infinitos que se iban generando uno tras otros, tanto como se quiera, no podían ser pensados en acto, o sea como un todo.

Esta idea del infinito perduró por más de dos mil años; toda la matemática creada en todo ese tiempo se realizó bajo la influencia aristotélica, después de los griegos, desde el Siglo XVII hasta bien avanzado el XIX, la existencia de los objetos matemáticos estaba ligada a algún objeto concreto visualizable o fenómeno físico. En ese sentido, hasta fines del Siglo XIX no era imaginable cómo un todo, el conjunto de los números naturales 0. 1, 2, 3,… ni mucho menos trabajado matemáticamente. Fue el ruso-alemán George Cantor quien, por primera vez, bajo una fundamentación estrictamente lógica, concibió el infinito actual, lo caracterizó y fue más allá de los números naturales, inventando un fascinante mundo abstracto que no tiene correlato con el mundo físico y concreto, estableciendo la génesis ontológica de la matemática actual.

Es sorprendente ver que esta mirada de Cantor vino a raíz de un problema concreto. En la década de 1860, en la Universidad de Halle (Alemania), el profesor Eduard Heine estaba investigando el problema de determinar si la descomposición en series de Fourier de una función periódica era única. Heine logró demostrar que, si la función no tiene saltos o discontinuidades, entonces la descomposición es única. Sin embargo, ¿qué pasa si este número de discontinuidades es infinito?, fue el problema que el profesor Heine dio a George Cantor en 1869 para su tesis doctoral.

En 1870, George Cantor obtuvo sus primeros resultados: la descomposición es única, siempre y cuando las discontinuidades estén distribuidas de una manera especial. Esta forma especial era compleja de expresar para Cantor, así que inventó una forma de hacerlo que llamó conjunto derivado (hoy día estudiado en los cursos de Topología) y que fue publicado en 1883. La definición fue la siguiente: Sea P un conjunto cualquiera de números, se llama conjunto derivado a la colección de todos los números que pueden aproximarse mediante sucesiones formales de elementos de P. Cantor lo denotó por . De tal forma que si P=Q (conjunto de números racionales) entonces Q´ = R (conjunto de los números reales). A pesar que la definición de está realizada con infinitos potenciales, el hecho de que Q´= R, nos induce a pensar en un infinito en acto. Por primera vez se construyó un infinito en acto concreto, iniciando un cambio conceptual arraigado en los matemáticos por más de veinte siglos.

George Cantor encontró conjuntos P, tal que su derivado , y el derivado de éste, P´´, y el del anterior P´´´…… hasta P∞, eran todos diferentes y no nulos; se hizo la pregunta ¿cuál es el derivado de P∞?

En noviembre 1882, George Cantor escribió a Richard Dedeking afirmando:

“Dios todopoderoso me ha concedido alcanzar las aclaraciones más notables e inesperadas en la teoría de conjuntos y en la teoría de números o más bien, que encontrara aquello que ha fermentado en mí durante años y que he buscado tanto tiempo”.

George Cantor había inventado un paraíso para los matemáticos, como decía David Hilbert, apareciendo ω= {0,1,2,3,…} y ω+1= {0,1,2,3..,ω} y así ω+2,ω+3,…., números que nos permiten contar más allá que los naturales; los llamó números ordinales. La principal característica de los números ordinales es:

Todo ordinal tiene un sucesor, por ejemplo, ω tiene como sucesor a ω+1= ω υ{ω}.

El primer ordinal de todos es el , su sucesor es el 1, y el sucesor de éste es el 2 y así sucesivamente, luego le sigue ω, luego ω +1 y así sucesivamente, todos ellos numerables. Sin embargo, estos conjuntos son los infinitos más pequeños que existen.


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

Más de 600 mil robots nuevos habrá en 2024

La Federación Internacional de Robótica proyecta que seguirá creciendo la demanda de robots industriales con la instalación de 600 mil robots nuevos en todo el mundo para el año 2024.

neu.jpg

¿Alguna vez te has preguntado cómo es que podemos caminar, correr, pensar, sentir o platicar con otros? De todo eso se encargan las neuronas, su función es importantísima, aquí te cuento porqué y cómo funcionan.

phil.jpg

El pasado tres de febrero, otro golpe brutal a la naturaleza tuvo lugar en Ohio, cuando un tren con sustancias peligrosas se descarriló y liberó gases venenosos; 14 de sus 150 vagones contenían 100 mil litros de cloruro de vinilo.

copas.jpg

La cerveza se utilizaba como ofrenda a los dioses en casi todas las culturas de Europa, el Medio Oriente y Asia. En los países nórdicos (Dinamarca, Finlandia, Islandia, Noruega y Suecia) se ofrecía cerveza a Odín.

bat-resistente.jpg

Durante la última década en el Reino Unido, se han identificado 19 nuevos mecanismos genéticos de resistencia en bacterias.

cof4llyu4jgz.jpg

Los Cordyceps infectan insectos que son dominantes y suelen propagarse como plagas

bact.jpg

La comunicación no es la única ni es exclusiva de los seres humanos. Acá te contamos por qué.

escafandra.jpg

El concepto tiempo asocia a los tres componentes estructurales del universo: materia, movimiento y espacio.

Robots mexicanos viajan hacia la luna

A bordo del cohete Centaur, de la empresa United Launch Alliance (ULA), viajan cinco robots diseñados por la UNAM, mismos que podrán desplazarse de manera autónoma por el suelo de la luna.

Hipatia.jpg

Hipatia era tan famosa que se convirtió en consejera de políticos, eclesiásticos y aristócratas; sin embargo, esta influencia social y política finalmente causó su trágica muerte.

niels.jpg

La vida de Henrik fue marcada por la pobreza, la fatalidad y la incomprensión; aun así, su mentalidad matemática, lo llevó a mostrar su genialidad, con ideas originales, mostrando caminos nuevos a los matemáticos de su época.

mano.jpg

Tal como los procesadores de texto cambiaron la forma es la que se escribía, ahora estamos ante una nueva herramienta que, si se usa de manera correcta, revolucionaría la forma en la que escribimos.

romeo.jpg

Las matemáticas, por muy abstractas que sean, tienen una base real.

phil.jpg

La imagen viral que vimos en redes sociales captada por el el telescopio espacial “James Webb” nos muestra cómo se veía una porción del universo hace cuatro mil 600 millones de años.

romeo-895.jpg

Para una circunferencia no es difícil notar que la forma de la figura siempre surge y resurge siendo la misma