Cargando, por favor espere...
Para la antigua cultura griega, los números naturales podían tener dos realizaciones, una como elemento de medición (lo llamaban magnitud) y otra como elemento de conteo. En este último solo se consideraban a partir del 2; el 1 no era considerado número y el cero no existía. Para Aristóteles, estos números u objetos son concebidos en potencia, es decir, conjuntos infinitos que se iban generando uno tras otros, tanto como se quiera, no podían ser pensados en acto, o sea como un todo.
Esta idea del infinito perduró por más de dos mil años; toda la matemática creada en todo ese tiempo se realizó bajo la influencia aristotélica, después de los griegos, desde el Siglo XVII hasta bien avanzado el XIX, la existencia de los objetos matemáticos estaba ligada a algún objeto concreto visualizable o fenómeno físico. En ese sentido, hasta fines del Siglo XIX no era imaginable cómo un todo, el conjunto de los números naturales 0. 1, 2, 3,… ni mucho menos trabajado matemáticamente. Fue el ruso-alemán George Cantor quien, por primera vez, bajo una fundamentación estrictamente lógica, concibió el infinito actual, lo caracterizó y fue más allá de los números naturales, inventando un fascinante mundo abstracto que no tiene correlato con el mundo físico y concreto, estableciendo la génesis ontológica de la matemática actual.
Es sorprendente ver que esta mirada de Cantor vino a raíz de un problema concreto. En la década de 1860, en la Universidad de Halle (Alemania), el profesor Eduard Heine estaba investigando el problema de determinar si la descomposición en series de Fourier de una función periódica era única. Heine logró demostrar que, si la función no tiene saltos o discontinuidades, entonces la descomposición es única. Sin embargo, ¿qué pasa si este número de discontinuidades es infinito?, fue el problema que el profesor Heine dio a George Cantor en 1869 para su tesis doctoral.
En 1870, George Cantor obtuvo sus primeros resultados: la descomposición es única, siempre y cuando las discontinuidades estén distribuidas de una manera especial. Esta forma especial era compleja de expresar para Cantor, así que inventó una forma de hacerlo que llamó conjunto derivado (hoy día estudiado en los cursos de Topología) y que fue publicado en 1883. La definición fue la siguiente: Sea P un conjunto cualquiera de números, se llama conjunto derivado a la colección de todos los números que pueden aproximarse mediante sucesiones formales de elementos de P. Cantor lo denotó por P´. De tal forma que si P=Q (conjunto de números racionales) entonces Q´ = R (conjunto de los números reales). A pesar que la definición de P´ está realizada con infinitos potenciales, el hecho de que Q´= R, nos induce a pensar en un infinito en acto. Por primera vez se construyó un infinito en acto concreto, iniciando un cambio conceptual arraigado en los matemáticos por más de veinte siglos.
George Cantor encontró conjuntos P, tal que su derivado P´, y el derivado de éste, P´´, y el del anterior P´´´…… hasta P∞, eran todos diferentes y no nulos; se hizo la pregunta ¿cuál es el derivado de P∞?
En noviembre 1882, George Cantor escribió a Richard Dedeking afirmando:
“Dios todopoderoso me ha concedido alcanzar las aclaraciones más notables e inesperadas en la teoría de conjuntos y en la teoría de números o más bien, que encontrara aquello que ha fermentado en mí durante años y que he buscado tanto tiempo”.
George Cantor había inventado un paraíso para los matemáticos, como decía David Hilbert, apareciendo ω= {0,1,2,3,…} y ω+1= {0,1,2,3..,ω} y así ω+2,ω+3,…., números que nos permiten contar más allá que los naturales; los llamó números ordinales. La principal característica de los números ordinales es:
Todo ordinal tiene un sucesor, por ejemplo, ω tiene como sucesor a ω+1= ω υ{ω}.
El primer ordinal de todos es el , su sucesor es el 1, y el sucesor de éste es el 2 y así sucesivamente, luego le sigue ω, luego ω +1 y así sucesivamente, todos ellos numerables. Sin embargo, estos conjuntos son los infinitos más pequeños que existen.
Si existen o no está sujeto a lo que concebimos como realidad, misma que es relativa, existe una realidad capturada por nuestros sentidos y una realidad inventada que sólo existe conceptualmente en la mente humana.
Apolonio de Perga, llamado "El Gran Geómetra", es uno de los tres grandes matemáticos de la antigüedad, mérito que comparte con Euclides y Arquímedes.
La reducción de la mariposa monarca en bosques mexicanos, las cuales ocuparon 2.10 hectáreas de terreno -en el primer trimestre del 2021-, respecto a las 2.83 hectáreas registradas en 2019.
A la naturaleza no le importa si los machos son atraídos hacia los machos o las hembras hacia las hembras. Es mas bien la ideología humana la que castiga estos comportamientos, argumentando que solo prohíbe lo que es “antinatural”.
Este fenómeno tiene graves consecuencias para el medio ambiente. Elimina la capa de protección de las plantas, dejándolas desprotegidas a la acción del viento, el frío, la sequía y convirtiéndolas en presa fácil de los parásitos o plagas, que provocan su muerte.
El Coahuilasaurus lipani destacó por su hocico corto y profundo.
Para aprovechar el petróleo crudo, éste debe someterse a un proceso de destilación fraccionada para separar sus diferentes componentes, dependiendo del tamaño de las moléculas y de sus puntos de ebullición (temperatura a la cual un líquido pasa a fase gas
"Hemos visto con nuestros ojos y sentido bajo nuestros pies cómo muere el Ártico", explicó en declaraciones a la televisión pública ARD el jefe de la expedición, Markus Rex.
Ingenuity dispone de dos cámaras, una en blanco y negro para la navegación y otra en color, que está orientada para tomar imágenes del terreno.
¡La carrera comienza! La marca cuyos autos alcanzan los 340 kilómetros por hora está en riesgo. Esto en el reciente estreno de la película Ferrari, de Michael Mann.
La sonda Mars Express halló “inmensos” depósitos de 3.7 kilómetros de espesor, ubicados bajo el suelo del ecuador de Marte, estructuras que sugieren la presencia de hielo.
En nuestra época, los alimentos se conservan mejor en refrigeración o en envases.
¿Por qué algunas personas pueden comprender más fácil el formalismo matemático? ¿Por qué les fluyen ideas matemáticas con mayor facilidad que a otras? Esta increíble mente perteneció a uno de los más enigmáticos en la Historia de la Matemática.
Luego de que El Universal publicara el documento que evidencian la postura del Conacyt, este organismo publicó un “aviso informativo” donde acusa al periódico de manipular la información.
En nuestros días, los científicos discuten con gran preocupación el posible aumento, en las futuras generaciones, de enfermedades o males derivados del efecto ambiental catastrófico más grande después de la época de las postguerras.
Irán e Israel acuerdan un alto el fuego total, anuncia Trump
Irán desmiente a Trump: “No hay acuerdo de alto el fuego”
Irán toma represalias; bombardea bases militares de EE.UU.
Hallan en Morelos fosa con 60 cuerpos, 10 eran bebés
Irán, Trump y Ormuz: el petróleo como rehén geopolítico
Sheinbaum elimina Unidad de Maestros que abrió AMLO con inversión millonaria
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador