Cargando, por favor espere...

Los métodos de Bar Hiyya y Kepler
Sirvan estos dos ejemplos para que los estudiantes mexicanos despierten su interés por el desarrollo histórico de las fórmulas matemáticas.
Cargando...

En la Edad Media, las aportaciones matemáticas al desarrollo del cálculo infinitesimal fueron escasas en comparación con las contribuciones de Eudoxo y Arquímedes. En la primera mitad del Siglo X, el geómetra Ibrahim ibn Sinan ibn Thabit, continuó con las investigaciones realizadas por Arquímedes acerca de áreas de parábolas y volumen de los conoides, pero su método es desconocido por nosotros. En la misma dirección siguió Kamal al-Din (Siglo XIII), quien usó la teoría de las cónicas, desarrolladas por el matemático griego Apolonio de Perga, para resolver problemas de óptica. Los matemáticos Habas al-Hasib al-Marwazi (Siglo IX) y Nasir ad-Din at Tusi (Siglo XIII), por su parte, desarrollaron la teoría de las trigonometrías plana y esférica, aportación significativa que sirvió a los matemáticos y físicos del Renacimiento.

Sin embargo, el método que me interesa destacar, en primer lugar, es el usado por el matemático Abraham Bar Hiyya (principios del Siglo XII), quien para encontrar el área de un círculo de radio R lo dividió en n circunferencias concéntricas con sus respectivos radios, que iban disminuyendo progresivamente hasta hacerse cero. Luego, desde el centro del círculo, levantó una recta perpendicular al diámetro dirigida hacia el Norte. Esta perpendicular la tomó como cateto-altura del triángulo rectángulo, y el otro cateto-base como la circunferencia concéntrica circunscrita extendida en un segmento rectilíneo. Al final, en el cuadrante positivo, quedan colocados todos los triángulos rectángulos con altura, los radios de cada circunferencia circunscrita y base igual a la medida de cada una de ellas. No es difícil notar que todos los triángulos rectángulos quedan inscritos en el triángulo con catetos R y 2πR. El área de éste, en efecto, corresponde al área del círculo de radio R.

La misma técnica es usada para calcular el volumen de una esfera. Primero, se toma la mitad de una esfera. Del centro se levanta una recta perpendicular al diámetro, que es dirigida hacia el polo Norte; a una cierta altura h, se hace un corte circular, que extendido sobre un plano, se convierte en una sección transversal de una pirámide de base triangular, y así sucesivamente para cada corte circular. Al final, frente al lector se erige una pirámide triangular con un número n de secciones transversales. Fijándose detenidamente en la base piramidal, uno se dará cuenta que el cateto más pequeño es igual a R, mientras que el cateto más grande tiene medida 2πR. Calculando el volumen de la pirámide, el cual es: área de la base por la altura h, todo dividido por 3, y sumándole el volumen de la otra pirámide obtenida con la otra mitad de la esfera, se obtiene (4/3)πR3, fórmula que corresponde al volumen de una esfera de radio R.

En segundo lugar, se encuentra el método usado por el matemático Johannes Kepler: éste usó una técnica parecida al matemático Bar Hiyya, pero retomó el método usado por Eudoxo y Arquímedes. Para encontrar el área de un círculo de radio R, en lugar de usar circunferencias concéntricas, Kepler partió el círculo en n rebanadas y las intercaló sobre un plano para formar un rectángulo de ancho r y largo πr. Los lados largos del rectángulo corresponden a las partes curvas de la circunferencia. Calculando el área de este rectángulo se encuentra el área del círculo de radio R.

En el caso de la esfera de radio R, Kepler dividió la superficie esférica en partes infinitesimales (cuadriláteros pequeños), y tomó cada uno de éstos como base de cada una de las pirámides infinitesimales con cúspide de cada una de ellas en el centro de la esfera. Es claro que la altura de cada una de esas pirámides infinitesimales es igual a R. Como el volumen de una pirámide es un tercio del producto de la superficie de la base por su altura, al sumar el volumen de todas las pirámides infinitesimales, Kepler encontró el volumen requerido de la esfera.

Sirvan estos dos ejemplos para que los estudiantes mexicanos despierten su interés por el desarrollo histórico de las fórmulas matemáticas, ya que hoy son usadas como dogmas, sin que el estudiante cuestione su veracidad y origen.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

Este fenómeno se denomina tormenta geomagnética y sus efectos se manifiestan a manera de interrupciones en las comunicaciones por radio y satélite, además de cortes de energía en los casos más extremos.

Entre marxistas es frecuente afirmar que lo más importante de Marx no fue lo que dijo, sino su método de conocimiento. Esto es así porque, así como el universo es infinito, también lo es su conocimiento.

El movimiento pedagógico “matemática moderna”, de los años 50-60 del s. XX, trajo consecuencias funestas en la educación; por ello, en los años 70, matemáticos como Morris Kline, escribieron este libro que a nuestro juicio tiene actual vigencia.

AMLO olvida que el desarrollo económico de un país está directamente relacionado con las inversiones en la investigación y la producción de ciencia y tecnología.

Existe una gran variedad de patrones que "evocan sensaciones dinámicas conscientes de movimiento ilusorio, a pesar de ser estático", explicaron los especialistas en su más reciente estudio.

Por primera vez en el mundo, científicos de Siberia lograron curar del cáncer a gatos y perros a través de una terapia basada en la captura de neutrones por el boro.

Los virus son entidades fascinantes por el alto grado de mutación en sus estrategias evolutivas, de las que quizás en algún futuro podamos aprender más.

Los nuevos ambientes activan en nuestro organismo la producción de dopamina, sustancia que promueve el aprendizaje asociativo.

El THC (presente en la marihuana y actúa sobre el sistema nervioso central) estimula la sobreproducción de dopamina, una hormona responsable del placer que se produce naturalmente ante acciones como comer o tener sexo.

A pesar del indiscutible rol que juegan los bosques, cada año disminuye su superficie debido al cambio de uso de suelo, tala clandestina e incendios forestales. De 2000 a 2018 se perdieron 13 mil 777 hectáreas.

“Estamos cerca de crear lo que se llama oncovacunas, vacunas contra el cáncer y medicamentos inmunomoduladores de nueva generación", afirmó el presidente de Rusia, Vladimir Putin.

Fue uno de los matemáticos políticos que apoyó decididamente la Revolución Francesa. En 1794 formó parte del comité de organización de la Ecole Centrale oles Travaux Rublics (Escuela Politécnica de París) donde escribió una de sus obras más famosas: Aplic

“El financiamiento es la columna vertebral de un sistema nacional de ciencia, tecnología e innovación. Desde aquí se aplican las políticas públicas, se incentiva o se corrige".

El pan y la sal comparten una historia íntimamente relacionada desde su descubrimiento y uso en la alimentación; la cultura los tiene como emblemas relevantes en la vida cotidiana de los pueblos más antiguos.

Pareciera contraintuitivo que alguien haga su vida al lado de grandes montañas que sacan humo y fuego, sin embargo, ese material que sacan por sus chimeneas hace que los suelos que los rodean sean fértiles...