Cargando, por favor espere...

Los métodos de Bar Hiyya y Kepler
Sirvan estos dos ejemplos para que los estudiantes mexicanos despierten su interés por el desarrollo histórico de las fórmulas matemáticas.
Cargando...

En la Edad Media, las aportaciones matemáticas al desarrollo del cálculo infinitesimal fueron escasas en comparación con las contribuciones de Eudoxo y Arquímedes. En la primera mitad del Siglo X, el geómetra Ibrahim ibn Sinan ibn Thabit, continuó con las investigaciones realizadas por Arquímedes acerca de áreas de parábolas y volumen de los conoides, pero su método es desconocido por nosotros. En la misma dirección siguió Kamal al-Din (Siglo XIII), quien usó la teoría de las cónicas, desarrolladas por el matemático griego Apolonio de Perga, para resolver problemas de óptica. Los matemáticos Habas al-Hasib al-Marwazi (Siglo IX) y Nasir ad-Din at Tusi (Siglo XIII), por su parte, desarrollaron la teoría de las trigonometrías plana y esférica, aportación significativa que sirvió a los matemáticos y físicos del Renacimiento.

Sin embargo, el método que me interesa destacar, en primer lugar, es el usado por el matemático Abraham Bar Hiyya (principios del Siglo XII), quien para encontrar el área de un círculo de radio R lo dividió en n circunferencias concéntricas con sus respectivos radios, que iban disminuyendo progresivamente hasta hacerse cero. Luego, desde el centro del círculo, levantó una recta perpendicular al diámetro dirigida hacia el Norte. Esta perpendicular la tomó como cateto-altura del triángulo rectángulo, y el otro cateto-base como la circunferencia concéntrica circunscrita extendida en un segmento rectilíneo. Al final, en el cuadrante positivo, quedan colocados todos los triángulos rectángulos con altura, los radios de cada circunferencia circunscrita y base igual a la medida de cada una de ellas. No es difícil notar que todos los triángulos rectángulos quedan inscritos en el triángulo con catetos R y 2πR. El área de éste, en efecto, corresponde al área del círculo de radio R.

La misma técnica es usada para calcular el volumen de una esfera. Primero, se toma la mitad de una esfera. Del centro se levanta una recta perpendicular al diámetro, que es dirigida hacia el polo Norte; a una cierta altura h, se hace un corte circular, que extendido sobre un plano, se convierte en una sección transversal de una pirámide de base triangular, y así sucesivamente para cada corte circular. Al final, frente al lector se erige una pirámide triangular con un número n de secciones transversales. Fijándose detenidamente en la base piramidal, uno se dará cuenta que el cateto más pequeño es igual a R, mientras que el cateto más grande tiene medida 2πR. Calculando el volumen de la pirámide, el cual es: área de la base por la altura h, todo dividido por 3, y sumándole el volumen de la otra pirámide obtenida con la otra mitad de la esfera, se obtiene (4/3)πR3, fórmula que corresponde al volumen de una esfera de radio R.

En segundo lugar, se encuentra el método usado por el matemático Johannes Kepler: éste usó una técnica parecida al matemático Bar Hiyya, pero retomó el método usado por Eudoxo y Arquímedes. Para encontrar el área de un círculo de radio R, en lugar de usar circunferencias concéntricas, Kepler partió el círculo en n rebanadas y las intercaló sobre un plano para formar un rectángulo de ancho r y largo πr. Los lados largos del rectángulo corresponden a las partes curvas de la circunferencia. Calculando el área de este rectángulo se encuentra el área del círculo de radio R.

En el caso de la esfera de radio R, Kepler dividió la superficie esférica en partes infinitesimales (cuadriláteros pequeños), y tomó cada uno de éstos como base de cada una de las pirámides infinitesimales con cúspide de cada una de ellas en el centro de la esfera. Es claro que la altura de cada una de esas pirámides infinitesimales es igual a R. Como el volumen de una pirámide es un tercio del producto de la superficie de la base por su altura, al sumar el volumen de todas las pirámides infinitesimales, Kepler encontró el volumen requerido de la esfera.

Sirvan estos dos ejemplos para que los estudiantes mexicanos despierten su interés por el desarrollo histórico de las fórmulas matemáticas, ya que hoy son usadas como dogmas, sin que el estudiante cuestione su veracidad y origen.


Escrito por Romeo Pérez Ortiz

Doctor en Fisica y Matematicas por la Universidad Estatal de Lomonosov de Moscu, Rusia


Notas relacionadas

Descartes, fundamentalmente era un filósofo racionalista, llegó a escribir otras obras importantes, en 1641 escribió Meditaciones de Filosofía.

“El pensamiento científico inventa conceptos implícitamente definidos mediante axiomas, postulados arbitrariamente, sin otra exigencia que la ausencia de contradicción", así se instauró en la matemática el paradigma que caracteriza hoy a la matemática.

Hay quien dice que algo o está vivo o está muerto; sin embargo, todo lo que empieza a vivir comienza a morir al mismo tiempo y todo lo inerte es germen de la vida, porque al final, la vida también es materia...

El país carece de una Ley en Ciencia y tecnología, aunque se ha hablado al respecto de realizarla, aun no hay avances en este tema.

Investigadores, indican que hace dos millones de años los primeros humanos tenían la capacidad y la tecnología necesarias para explotar de forma continua una variedad de hábitats cambiantes.

Este fenómeno se encuentra en el movimiento de los mares, en los chorros que salen de un grifo con suficiente velocidad.

“En México no se está instrumentando una política real para salvar la vida y proteger a los mexicanos de los desastres naturales", afirmó el Doctor en Física, Romeo Pérez Ortiz.

George Cantor sufrió una una profunda depresión por la muerte de su hijo, pero también por las ideas religiosas que tenía: Dios le revelaba todas las deducciones lógicas a las que llegó.

Tal como los procesadores de texto cambiaron la forma es la que se escribía, ahora estamos ante una nueva herramienta que, si se usa de manera correcta, revolucionaría la forma en la que escribimos.

Einstein hizo lo mismo con la estructura del universo donde habitamos, al demostrar que es también un espacio curvo.

Se trata de "una zona que está cubierta con nieve 10 meses al año, de difícil acceso por la altura y geografía que ostenta una tupida vegetación y bosque valdiviano".

Las aves han desempeñado varios papeles fundamentales a lo largo de la historia humana, desde ser fuente crucial en los ecosistemas, hasta servir como objeto de tranquilidad a la cansada y ajetreada alma de los trabajadores.

"Hemos visto con nuestros ojos y sentido bajo nuestros pies cómo muere el Ártico", explicó en declaraciones a la televisión pública ARD el jefe de la expedición, Markus Rex.

El dilema de las redes sociales aborda el hecho de cómo el producto que las compañías “procesan” para lograr la obtención de fabulosas ganancias somos los mismos seres humanos.

Las consecuencias de la desatención del programa de vacunación infantil ya se están manifestando, pues hay rebrotes de Sarampión y Tuberculosis.

Edición impresa

Editorial

La salud mexicana al término del sexenio


Dinamarca es el punto de comparación que eligió AMLO desde el principio para prometer una atención médica de primer mundo para todos los mexicanos.

Síguenos en Facebook


Poesía

Sociedad anónima

Sociedad anónima 1134