Cargando, por favor espere...
En la Edad Media, las aportaciones matemáticas al desarrollo del cálculo infinitesimal fueron escasas en comparación con las contribuciones de Eudoxo y Arquímedes. En la primera mitad del Siglo X, el geómetra Ibrahim ibn Sinan ibn Thabit, continuó con las investigaciones realizadas por Arquímedes acerca de áreas de parábolas y volumen de los conoides, pero su método es desconocido por nosotros. En la misma dirección siguió Kamal al-Din (Siglo XIII), quien usó la teoría de las cónicas, desarrolladas por el matemático griego Apolonio de Perga, para resolver problemas de óptica. Los matemáticos Habas al-Hasib al-Marwazi (Siglo IX) y Nasir ad-Din at Tusi (Siglo XIII), por su parte, desarrollaron la teoría de las trigonometrías plana y esférica, aportación significativa que sirvió a los matemáticos y físicos del Renacimiento.
Sin embargo, el método que me interesa destacar, en primer lugar, es el usado por el matemático Abraham Bar Hiyya (principios del Siglo XII), quien para encontrar el área de un círculo de radio R lo dividió en n circunferencias concéntricas con sus respectivos radios, que iban disminuyendo progresivamente hasta hacerse cero. Luego, desde el centro del círculo, levantó una recta perpendicular al diámetro dirigida hacia el Norte. Esta perpendicular la tomó como cateto-altura del triángulo rectángulo, y el otro cateto-base como la circunferencia concéntrica circunscrita extendida en un segmento rectilíneo. Al final, en el cuadrante positivo, quedan colocados todos los triángulos rectángulos con altura, los radios de cada circunferencia circunscrita y base igual a la medida de cada una de ellas. No es difícil notar que todos los triángulos rectángulos quedan inscritos en el triángulo con catetos R y 2πR. El área de éste, en efecto, corresponde al área del círculo de radio R.
La misma técnica es usada para calcular el volumen de una esfera. Primero, se toma la mitad de una esfera. Del centro se levanta una recta perpendicular al diámetro, que es dirigida hacia el polo Norte; a una cierta altura h, se hace un corte circular, que extendido sobre un plano, se convierte en una sección transversal de una pirámide de base triangular, y así sucesivamente para cada corte circular. Al final, frente al lector se erige una pirámide triangular con un número n de secciones transversales. Fijándose detenidamente en la base piramidal, uno se dará cuenta que el cateto más pequeño es igual a R, mientras que el cateto más grande tiene medida 2πR. Calculando el volumen de la pirámide, el cual es: área de la base por la altura h, todo dividido por 3, y sumándole el volumen de la otra pirámide obtenida con la otra mitad de la esfera, se obtiene (4/3)πR3, fórmula que corresponde al volumen de una esfera de radio R.
En segundo lugar, se encuentra el método usado por el matemático Johannes Kepler: éste usó una técnica parecida al matemático Bar Hiyya, pero retomó el método usado por Eudoxo y Arquímedes. Para encontrar el área de un círculo de radio R, en lugar de usar circunferencias concéntricas, Kepler partió el círculo en n rebanadas y las intercaló sobre un plano para formar un rectángulo de ancho r y largo πr. Los lados largos del rectángulo corresponden a las partes curvas de la circunferencia. Calculando el área de este rectángulo se encuentra el área del círculo de radio R.
En el caso de la esfera de radio R, Kepler dividió la superficie esférica en partes infinitesimales (cuadriláteros pequeños), y tomó cada uno de éstos como base de cada una de las pirámides infinitesimales con cúspide de cada una de ellas en el centro de la esfera. Es claro que la altura de cada una de esas pirámides infinitesimales es igual a R. Como el volumen de una pirámide es un tercio del producto de la superficie de la base por su altura, al sumar el volumen de todas las pirámides infinitesimales, Kepler encontró el volumen requerido de la esfera.
Sirvan estos dos ejemplos para que los estudiantes mexicanos despierten su interés por el desarrollo histórico de las fórmulas matemáticas, ya que hoy son usadas como dogmas, sin que el estudiante cuestione su veracidad y origen.
Así fue como nacieron las nuevas geometrías, que describen con más exactitud el universo donde vivimos, sin omitir y rechazar a la geometría euclidiana.
El tren estará atravesando el segundo pulmón forestal de América Latina: la selva maya. Fragmenta el hábitat y además viola los derechos de todas las comunidades indígenas que viven en la zona, entre otras graves consecuencias.
Científicos confirman que fragmento de roca recuperado hace 11 años es el material más caliente jamás encontrado en la Tierra.
Dado que los nutrientes de una selva están inmovilizados en la densa vegetación, el suelo es poco fértil y no es adecuado para desarrollar actividades agropecuarias. Al talar los árboles, los nutrientes se van en los troncos y no retornan al suelo.
La datación de las rocas es milenaria, surgieron de eventos geológicos en la génesis del sistema solar. Las capas terrestres de los primeros elementos de polvo estelar que formaron los planetas hace cuatro mil 500 millones de años.
La Organización Panamericana de la Salud señala que entre 2015 y 2050 en América Latina, el 68% de las mujeres serán más propensas a padecer demencia que los hombres.
El ser humano tiene la capacidad de obtener e interpretar la información que obtiene de su medio ambiente para generar una respuesta, en forma de movimiento.
Los investigadores rusos, que con sus aportaciones a la humanidad han sido reconocidos con 22 Premio Nobel y 10 Medallas Fields.
Se ha demostrado que los microplásticos causan daños graves a las células humanas, daños que van desde reacciones alérgicas hasta provocar la muerte celular. No solo perjudican el medio ambiente, sino también al hombre.
Aunque amado por unos y odiado por otros, el huitlacoche tiene un papel relevante en la economía, gastronomía y en la ciencia.
Las edificaciones no están diseñadas para enfrentar el "peligro silencioso" que las acecha desde el subsuelo, advierten ingenieros de la Universidad Northwestern (EE.UU.)
China espera convertirse en la tercera nación en lograr esta hazaña, que requiere un operativo extremadamente complejo.
Investigadores, indican que hace dos millones de años los primeros humanos tenían la capacidad y la tecnología necesarias para explotar de forma continua una variedad de hábitats cambiantes.
Con la muerte de Arquímedes se inicia el ocaso de los griegos, en el año 146 a.C. los romanos invadieron Cartago y el Mediterráneo, menos Egipto.
“El financiamiento es la columna vertebral de un sistema nacional de ciencia, tecnología e innovación. Desde aquí se aplican las políticas públicas, se incentiva o se corrige".
Cumplen 28 horas los bloqueos en Ecatepec
¡Otra vez! Sistema Cutzamala pierde millones de metros cúbicos de agua
Con plantón, Policías de Hidalgo exigen pago de aguinaldo
Motín en penal de Villahermosa desata caos y moviliza fuerzas de seguridad
Ley Silla entrará en vigor hasta el 17 de junio del próximo año
Madres en resistencia inician huelga de hambre en Chiapas
Escrito por Romeo Pérez
Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.