Cargando, por favor espere...

Los conjuntos infinitos y sus rarezas
La existencia de los conjuntos infinitos en matemática es obra de George Cantor, quien quedó maravillado cuando descubrió algunas rarezas que emanaban de este objeto, sin darse cuenta que estaba a punto de ingresar en un fascinante mundo abstracto.
Cargando...

La existencia de los conjuntos infinitos en matemática es obra de George Cantor, quien quedó maravillado cuando descubrió algunas rarezas que emanaban de este objeto, sin darse cuenta que estaba a punto de ingresar en un fascinante mundo abstracto; en este artículo mencionaremos dos de ellas.

Primero: Hay tantos puntos en el plano como en la recta real, la naturaleza finita de nuestra mente nos hace pensar que el todo es más grande que las partes, por ejemplo, en el plano debe haber más puntos que en una parte de ella; lo que nuestra mente no distingue es que se trata de conjuntos infinitos: mentalmente no están a nuestro alcance. Sin embargo, el formalismo matemático nos permite establecer que tienen la misma cantidad de puntos; es una afirmación fehaciente que no admite duda, aunque nuestra mente diga lo contrario. En la matemática se prueba tal afirmación pues, exhibiendo una biyección entre los puntos del plano y los de una parte de ella, por ejemplo, una recta. Fue George Cantorquien inventó una biyección entre el cuadrado de lado, la unidad y el segmento de longitud, la unidad; a todo punto del cuadrado se le hace corresponder un punto del segmento y viceversa. Esta biyección se puede extender entre todo el plano y toda una recta.

Es decir, George Cantor probó que la cardinalidad del plano es igual a la de la recta, es decir, ambos objetos matemáticos tienen la misma cantidad de puntos. Por supuesto que este resultado (y otros) fueron duramente cuestionados por la comunidad matemática de la época, incluso el mismo George Cantor, en una carta dirigida a Richard Dedekind en 1877, escribió: “lo veo y no lo creo”.

Segundo: Otra rareza de estos conjuntos infinitos es la construcción de un conjunto grande, pero que mide cero. George Cantor, en 1883, inventó una sucesión de conjuntos muy especiales que hoy día llamamos “conjuntos de Cantor”, cuya intersección infinita es no vacía, pero cuya longitud total es cero.

Estos conjuntos de Cantor se consiguen al dividir el segmento unitario en tres partes y extraer la parte central, en cada segmento anterior extraer su tercera parte, y así sucesivamente hasta lograr una sucesión de segmentos cuya intersección es no vacío; además, contiene al cero y al uno. George Cantor encontró que este conjunto es de medida nula, y no era vacío. Además, probó que el cardinal del conjunto de Cantor no es numerable, es decir, tiene la misma cardinalidad que los números reales

Este hecho sorprendente fue rechazado por la comunidad matemática; sólo Richard Dedekind apoyó y comprendió las ideas de Cantor, cuyos conjuntos hoy están completamente aceptados y son estudiados en Topología con mucho interés, puesto que, con ellos, se logra establecer ejemplos y contraejemplos interesantes.

Estas investigaciones de George Cantor conformaron la base para extender los números naturales a nuevos objetos, que él llamó transfinitos. Este paso se consigue distinguiendo dos elementos esenciales de los conjuntos: La cantidad de sus elementos, que llamó cardinalidad, y la posición que ocupa un elemento en un conjunto, concepto al que llamó orden, es decir, una cierta ordenación, cuyo concepto llamó ordinalidad.

George Cantor, estudió por separado estas clases de conceptos en los conjuntos, dotándoles de cierta operatividad aritmética, tomando como referencia al conjunto de los números naturales; para ello, a los conjuntos vistos desde el punto de vista del orden, les llamó números ordinales; y visto en relación al número de sus elementos, les llamó números cardinales. Cantor estableció estos conceptos para los conjuntos infinitos, como los números naturales y reales, deduciendo sorprendentes resultados y conjeturando la llamada Hipótesis del Continuo, problema aún abierto. Ambos conceptos generalizan a la aritmética de los números naturales para los conjuntos finitos; para los conjuntos infinitos sólo se cumplen algunas propiedades. Este fascinante mundo de los números transfinitos representa un paraíso hermoso, lleno de rarezas que se contraponen a nuestra mente finita; sin embargo, hemos logrado comprenderlos, aunque no conozcamos qué son, dónde están y qué naturaleza poseen.


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

La tenacidad en su trabajo le acompañó hasta una edad muy avanzada.

La cultura no es prioridad para el gobierno actual ni lo fue para el anterior.

Al menos 40 artistas participaron en la elaboración de 35 murales en Periférico Norte.

Esta medalla tiene la imagen del matemático griego Arquímedes y una inscripción que dice “Trascenderse a uno mismo y dominar el mundo”.

Un género cinematográfico que las plataformas de entretenimiento han explotado en los últimos años es el bélico.

En el documental ¿Cómo se enriqueció China?, Michael Wood establece que no bastaba la liberalización del mercado: era necesario avanzar en la preparación de cientos de miles de profesionistas que supieran aplicar sus conocimientos en la producción, en la administración y en el comercio.

Fue nombrado miembro de la Real Academia de Ciencias Exactas, Físicas y Naturales en 1983; entre 1991 y 1993 fue presidente de la Comisión Internacional de Instrucción Matemática (ICMI).

En esta novela, el auto recurre a una figura mítico-religiosa para recordar al hombre moderno que la igualdad socioeconómica, el pensamiento objetivo o científico y el sentimiento de hermandad (incluido el amor físico) deben prevalecer en su realidad cotidiana.

Pablo Neruda, Rabindranath Tagore, Gabriela Mistral y Rubén Darío fueron interpretados por menores de 8 años

Enclavado en la árida Mixteca poblana, Tecomatlán emerge entre colinas y vegetación, con un cielo vasto que lo cubre como un manto. Sus calles pavimentadas y casas reflejan la sencillez y el arraigo de su gente.

Desde la Colonia Española, la Independencia y el Porfiriato, los clasemedieros compartieron pobreza e incomprensión con las clases bajas.

Los personajes sacros fueron satirizados al sustituirse con figuras representantes de la comunidad LGTB.

En 2015, el realizador ruso Andrey Vereshchagin filmó Mi segunda vida que es una historia de dos personas marcadas por la tragedia cuyas vidas, por alguna razón, se cruzan.

El desarrollo de la investigación matemática ha sido tan espectacular, que abarcar todo el conocimiento actual de la matemática se ha vuelto imposible para cualquier ser humano.

México es un país con gran diversidad lingüística: 68 agrupaciones lingüísticas.