Cargando, por favor espere...
La existencia de los conjuntos infinitos en matemática es obra de George Cantor, quien quedó maravillado cuando descubrió algunas rarezas que emanaban de este objeto, sin darse cuenta que estaba a punto de ingresar en un fascinante mundo abstracto; en este artículo mencionaremos dos de ellas.
Primero: Hay tantos puntos en el plano como en la recta real, la naturaleza finita de nuestra mente nos hace pensar que el todo es más grande que las partes, por ejemplo, en el plano debe haber más puntos que en una parte de ella; lo que nuestra mente no distingue es que se trata de conjuntos infinitos: mentalmente no están a nuestro alcance. Sin embargo, el formalismo matemático nos permite establecer que tienen la misma cantidad de puntos; es una afirmación fehaciente que no admite duda, aunque nuestra mente diga lo contrario. En la matemática se prueba tal afirmación pues, exhibiendo una biyección entre los puntos del plano y los de una parte de ella, por ejemplo, una recta. Fue George Cantorquien inventó una biyección entre el cuadrado de lado, la unidad y el segmento de longitud, la unidad; a todo punto del cuadrado se le hace corresponder un punto del segmento y viceversa. Esta biyección se puede extender entre todo el plano y toda una recta.
Es decir, George Cantor probó que la cardinalidad del plano es igual a la de la recta, es decir, ambos objetos matemáticos tienen la misma cantidad de puntos. Por supuesto que este resultado (y otros) fueron duramente cuestionados por la comunidad matemática de la época, incluso el mismo George Cantor, en una carta dirigida a Richard Dedekind en 1877, escribió: “lo veo y no lo creo”.
Segundo: Otra rareza de estos conjuntos infinitos es la construcción de un conjunto grande, pero que mide cero. George Cantor, en 1883, inventó una sucesión de conjuntos muy especiales que hoy día llamamos “conjuntos de Cantor”, cuya intersección infinita es no vacía, pero cuya longitud total es cero.
Estos conjuntos de Cantor se consiguen al dividir el segmento unitario en tres partes y extraer la parte central, en cada segmento anterior extraer su tercera parte, y así sucesivamente hasta lograr una sucesión de segmentos cuya intersección es no vacío; además, contiene al cero y al uno. George Cantor encontró que este conjunto es de medida nula, y no era vacío. Además, probó que el cardinal del conjunto de Cantor no es numerable, es decir, tiene la misma cardinalidad que los números reales.
Este hecho sorprendente fue rechazado por la comunidad matemática; sólo Richard Dedekind apoyó y comprendió las ideas de Cantor, cuyos conjuntos hoy están completamente aceptados y son estudiados en Topología con mucho interés, puesto que, con ellos, se logra establecer ejemplos y contraejemplos interesantes.
Estas investigaciones de George Cantor conformaron la base para extender los números naturales a nuevos objetos, que él llamó transfinitos. Este paso se consigue distinguiendo dos elementos esenciales de los conjuntos: La cantidad de sus elementos, que llamó cardinalidad, y la posición que ocupa un elemento en un conjunto, concepto al que llamó orden, es decir, una cierta ordenación, cuyo concepto llamó ordinalidad.
George Cantor, estudió por separado estas clases de conceptos en los conjuntos, dotándoles de cierta operatividad aritmética, tomando como referencia al conjunto de los números naturales; para ello, a los conjuntos vistos desde el punto de vista del orden, les llamó números ordinales; y visto en relación al número de sus elementos, les llamó números cardinales. Cantor estableció estos conceptos para los conjuntos infinitos, como los números naturales y reales, deduciendo sorprendentes resultados y conjeturando la llamada Hipótesis del Continuo, problema aún abierto. Ambos conceptos generalizan a la aritmética de los números naturales para los conjuntos finitos; para los conjuntos infinitos sólo se cumplen algunas propiedades. Este fascinante mundo de los números transfinitos representa un paraíso hermoso, lleno de rarezas que se contraponen a nuestra mente finita; sin embargo, hemos logrado comprenderlos, aunque no conozcamos qué son, dónde están y qué naturaleza poseen.
Poeta británico, nació el 31 de octubre de 1795 en Londres.
El tránsito hacia una matemática filosófica exige iniciar una quinta revolución matemática; para ello, el estudio de la historia desde el hacer de un matemático es fundamental.
La personalidad de Gottfried Leibniz, lo convertía en un brillante diplomático.
Desde la Colonia Española, la Independencia y el Porfiriato, los clasemedieros compartieron pobreza e incomprensión con las clases bajas.
Daruwalla, fue un eminente profesor que impartió clases en el Government College de Lahore.
Los hongos no son plantas ni animales; constituyen un reino aparte.
Manuel Gutiérrez Nájera es considerado el padre del modernismo mexicano.
De ascendencia irlandesa nació en El Rosario, Sinaloa, el 13 de mayo de 1904.
Estos señores son unos verdaderos pillos, carecen de genuinos sentimientos religiosos y su único afán es enriquecerse de forma fácil y rápida.
La poesía debería formar parte del bastimento de todo el que pretenda buscar soluciones a los numerosos problemas humanos.
Se trata de tres basamentos piramidales ubicadas en 20 hectáreas del municipio de Comonfort.
* La oratoria debe ser el instrumento fino y lúcido con el cual le trasmitamos nuevas ideas al pueblo.
Hoy día, Azucena Cordero cursa el séptimo semestre de la carrera de ingeniería en Gestión Empresarial. Su disciplina, tenacidad y voluntad la llevaron a colocar muy en alto el nombre del Instituto Tecnológico de Tecomatlán.
Es poeta, traductor y autor de ensayos, líder de la generación joven de intelectuales de Bielorrusia.
Escritor, ilustrador y artista conocido por su poesía nonsense y sus Limerick.
Congelan reforma de salario digno
Proveedores quebrados: Pemex no les paga y el SAT los embarga
Bancos investigados por nexos con el narco podrán seguir operando: ABM
Entregan 14 millones de pesos de programas sociales a personas fallecidas
Crece 68% la deuda pública durante el sexenio de AMLO
Protesta de recolectores de basura evidencia abandono en Ixtapaluca
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador