Cargando, por favor espere...
Desde el inicio de la cuarta revolución matemática, en las primeras décadas del Siglo XX, el formalismo hilbertiano ha caracterizado el trabajo matemático hasta el día de hoy. Este paradigma histórico del formalismo se caracteriza por:
La matemática es un conjunto de sistemas de axiomas, proposiciones, teoremas, dentro de un lenguaje lógico.
Los axiomas del sistema deben de estar libres de contradicciones.
Toda afirmación dentro de la teoría debe ser demostrada en un número finito de pasos.
El Programa de Hilbert establecía que los conjuntos serían los objetos básicos para iniciar una reconstrucción de toda la matemática, sujeto a un sistema axiomático inicial. Llegó a afirmar: “Nadie nos podrá expulsar del paraíso que para nosotros ha creado Cantor”.
Dentro de varios sistemas axiomáticos que se inventaron, el Sistema de Zermelo–Fraenkel, inventado por Ernst Zermelo (1871-1953) y Abraham Fraenkel (1891-1965), fue el más popular dentro de los matemáticos y el que los Bourbaki adoptaron para reconstruir la matemática de su época.
Según el Programa de Hilbert, este sistema estaba libre de contradicciones y, además, se debería probar la verdad o falsedad de cualquier enunciado matemático dentro del sistema en un número finito de pasos. Este optimismo de David Hilbert, fue tan grande que llegó a decir: Debemos saber, sabremos, es decir, estaba convencido de que todo lo conjeturado en los sistemas axiomáticos es decidible, lo que significa que podemos afirmar su verdad o falsedad. Sin embargo, fue rápidamente cuestionado en 1931 por un joven matemático austriaco llamado Kurt Gödel (1906-1978), quien en su tesis doctoral logró demostrar dos teoremas de incompletitud de la matemática. Estos teoremas establecen que en todo sistema axiomático (que por lo menos describa la aritmética de los números naturales) que esté libre de contradicciones existen enunciados cuya verdad o falsedad no será posible demostrar. Es decir, la matemática no lo demuestra todo, como ingenuamente se cree. Es probable que para poder demostrar que un enunciado sea verdadero o falso se tenga que incrementar el sistema axiomático inicial, pero en este nuevo sistema también existe la posibilidad de conjeturar nuevos enunciados cuya verdad o falsedad no sea posible demostrar. En concreto, Kurt Gödel, demostró que:
1.- Si el sistema axiomático no tiene contradicciones, entonces no es completo.
2.- La consistencia del sistema axiomático no puede demostrarse en el interior del sistema.
Este resultado, considerado el más importante del Siglo XX, echó abajo el optimismo de Hilbert, pero ha pasado desapercibido en el trabajo matemático hasta nuestros días debido al Programa Bourbakiano, que se caracterizó por ser extremadamente formalista y que masificó el conocimiento matemático a través de una serie de libros titulados Elementos de la Matemática, en donde inició un estudio riguroso desde los sistemas lógicos, el sistema axiomático de Zermelo- Fraenkel, la teoría de conjuntos, la topología, el álgebra abstracta y demás temas de la matemática contemporánea. Estos libros han sido la base fundamental en la elaboración de los libros-textos de los años 60-70, con los que se han formado los actuales matemáticos.
Existen conjeturas que han probado su independencia de los sistemas axiomáticos, por ejemplo, la Hipótesis del Continuo, formulada por George Cantor (1845-1918) en 1878, que dice: “No existe un conjunto que sea más grande que el conjunto de los números naturales, y a la vez más pequeño que el conjunto de números reales”. El mismo Kurt Gödel, demostró que no es posible demostrar su refutación dentro del sistema axiomático de la teoría de conjuntos. De otro lado, Paul Cohen (1934-2007) demostró que tampoco se puede demostrar su afirmación dentro del sistema formal.
Desde el punto de vista filosófico, se plantea algunas preguntas como: ¿en qué se basa el conocimiento matemático actual?; si existen enunciados matemáticos indecidibles, ¿dónde está el fundamento de aquellas proposiciones que se tienen como verdaderas? Se pone en debate la noción de verdad matemática en las demostraciones. La reflexión filosófica-matemática es muy relevante en este tema, constituyendo un elemento central para el futuro de la misma matemática. De lo único que estamos seguros es de que la matemática no lo demuestra todo; es muy probable que éste sea el inicio para superar el formalismo hilbertiano y transitar hacia una quinta revolución matemática.
Fue uno de los matemáticos políticos que apoyó decididamente la Revolución Francesa. En 1794 formó parte del comité de organización de la Ecole Centrale oles Travaux Rublics (Escuela Politécnica de París) donde escribió una de sus obras más famosas: Aplic
Se ha demostrado que los microplásticos causan daños graves a las células humanas, daños que van desde reacciones alérgicas hasta provocar la muerte celular. No solo perjudican el medio ambiente, sino también al hombre.
Queda claro que AMLO tiene un desconocimiento abismal acerca de la relación entre la ciencia y la política.
“Para los mexicanos, el maíz está entrelazado con su vida, su historia y sus tradiciones; no es solo un cultivo, sino el centro de su identidad", Sin embargo, hoy el maíz no cubre la demanda nacional, entre otras deficiencias.
volviendo al ejemplo del futbol, las vacunas son el equivalente a jugar un partido amistoso a principio de temporada, solo nos preparan para los posibles escenarios de una “competencia real”.
¿Por qué las plantas generan frutos? Porque como todos los seres vivos, buscan perpetuarse en el mundo. El fruto es una adaptación exitosa de las plantas para lograr esta finalidad.
“Es por demás evidente que la acusación que se ha lanzado desde la FGR es absurda e impropia de un país gobernado bajo principios mínimos de Estado de derecho".
La IA sirve para que las empresas comerciales puedan manejar las conductas humanas sobre esa base de “éxito”.
Científicos identificaron la existencia de campos magnéticos poderosos y ordenados que se despliegan en espiral desde el borde del agujero negro supermasivo conocido como Sagitario A* (Sgr A*).
En este artículo defenderemos, desde la dimensión antropológica de la matemática, una de las afirmaciones que han concitado discusiones entre matemáticos y filósofos.
Heine logró demostrar que si una serie trigonométrica converge a una función continua en un intervalo dado, entonces la serie es única.
Toda afirmación en matemática es siempre referida a un determinado sistema formal.
Aunque las ideas iniciales fueron concebidas por Bernhard Riemann y Richard Dedekind, se reconoce que el matemático que consolidó y sentó las bases para la axiomatización de la teoría de conjuntos fue el ruso George Cantor.
Paul Erdós colaboró con tantos matemáticos que dio origen al famoso “número de Erdós”.
Un sistema puede definirse como un conjunto de elementos o variables que interactúan de manera coherente. Estos elementos pueden ser de tipo económico, técnico, social o ecológico, y forman parte de una estructura compleja.
Gran Guerra Patria, la fase más atroz de la lucha de clases bajo el Imperialismo
El legado político-moral de la victoria soviética sobre el nazifascismo
El Día de la Victoria Soviética
Robert Prevost es el nuevo papa; estas son sus primeras palabras
Línea B del Metro reanuda servicio tras falla en las vías
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador