Cargando, por favor espere...
Desde el inicio de la cuarta revolución matemática, en las primeras décadas del Siglo XX, el formalismo hilbertiano ha caracterizado el trabajo matemático hasta el día de hoy. Este paradigma histórico del formalismo se caracteriza por:
La matemática es un conjunto de sistemas de axiomas, proposiciones, teoremas, dentro de un lenguaje lógico.
Los axiomas del sistema deben de estar libres de contradicciones.
Toda afirmación dentro de la teoría debe ser demostrada en un número finito de pasos.
El Programa de Hilbert establecía que los conjuntos serían los objetos básicos para iniciar una reconstrucción de toda la matemática, sujeto a un sistema axiomático inicial. Llegó a afirmar: “Nadie nos podrá expulsar del paraíso que para nosotros ha creado Cantor”.
Dentro de varios sistemas axiomáticos que se inventaron, el Sistema de Zermelo–Fraenkel, inventado por Ernst Zermelo (1871-1953) y Abraham Fraenkel (1891-1965), fue el más popular dentro de los matemáticos y el que los Bourbaki adoptaron para reconstruir la matemática de su época.
Según el Programa de Hilbert, este sistema estaba libre de contradicciones y, además, se debería probar la verdad o falsedad de cualquier enunciado matemático dentro del sistema en un número finito de pasos. Este optimismo de David Hilbert, fue tan grande que llegó a decir: Debemos saber, sabremos, es decir, estaba convencido de que todo lo conjeturado en los sistemas axiomáticos es decidible, lo que significa que podemos afirmar su verdad o falsedad. Sin embargo, fue rápidamente cuestionado en 1931 por un joven matemático austriaco llamado Kurt Gödel (1906-1978), quien en su tesis doctoral logró demostrar dos teoremas de incompletitud de la matemática. Estos teoremas establecen que en todo sistema axiomático (que por lo menos describa la aritmética de los números naturales) que esté libre de contradicciones existen enunciados cuya verdad o falsedad no será posible demostrar. Es decir, la matemática no lo demuestra todo, como ingenuamente se cree. Es probable que para poder demostrar que un enunciado sea verdadero o falso se tenga que incrementar el sistema axiomático inicial, pero en este nuevo sistema también existe la posibilidad de conjeturar nuevos enunciados cuya verdad o falsedad no sea posible demostrar. En concreto, Kurt Gödel, demostró que:
1.- Si el sistema axiomático no tiene contradicciones, entonces no es completo.
2.- La consistencia del sistema axiomático no puede demostrarse en el interior del sistema.
Este resultado, considerado el más importante del Siglo XX, echó abajo el optimismo de Hilbert, pero ha pasado desapercibido en el trabajo matemático hasta nuestros días debido al Programa Bourbakiano, que se caracterizó por ser extremadamente formalista y que masificó el conocimiento matemático a través de una serie de libros titulados Elementos de la Matemática, en donde inició un estudio riguroso desde los sistemas lógicos, el sistema axiomático de Zermelo- Fraenkel, la teoría de conjuntos, la topología, el álgebra abstracta y demás temas de la matemática contemporánea. Estos libros han sido la base fundamental en la elaboración de los libros-textos de los años 60-70, con los que se han formado los actuales matemáticos.
Existen conjeturas que han probado su independencia de los sistemas axiomáticos, por ejemplo, la Hipótesis del Continuo, formulada por George Cantor (1845-1918) en 1878, que dice: “No existe un conjunto que sea más grande que el conjunto de los números naturales, y a la vez más pequeño que el conjunto de números reales”. El mismo Kurt Gödel, demostró que no es posible demostrar su refutación dentro del sistema axiomático de la teoría de conjuntos. De otro lado, Paul Cohen (1934-2007) demostró que tampoco se puede demostrar su afirmación dentro del sistema formal.
Desde el punto de vista filosófico, se plantea algunas preguntas como: ¿en qué se basa el conocimiento matemático actual?; si existen enunciados matemáticos indecidibles, ¿dónde está el fundamento de aquellas proposiciones que se tienen como verdaderas? Se pone en debate la noción de verdad matemática en las demostraciones. La reflexión filosófica-matemática es muy relevante en este tema, constituyendo un elemento central para el futuro de la misma matemática. De lo único que estamos seguros es de que la matemática no lo demuestra todo; es muy probable que éste sea el inicio para superar el formalismo hilbertiano y transitar hacia una quinta revolución matemática.
Aunque amado por unos y odiado por otros, el huitlacoche tiene un papel relevante en la economía, gastronomía y en la ciencia.
La IA sirve para que las empresas comerciales puedan manejar las conductas humanas sobre esa base de “éxito”.
Einstein hizo lo mismo con la estructura del universo donde habitamos, al demostrar que es también un espacio curvo.
El equipo de la misión señaló que continúa trabajando para mantener operativa a la nave Voyager 1
El desarrollo de la investigación matemática ha sido tan espectacular, que abarcar todo el conocimiento actual de la matemática se ha vuelto imposible para cualquier ser humano.
La relación entre la ciencia y el dinero, entre la técnica y el negocio, ha sido ampliamente discutida por los grandes pensadores de la humanidad.
El maestro de hoy, no todos desde luego, pero sí la mayoría, ya no enseña a su alumno a razonar y analizar.
Investigadores del Instituto de Ingeniería (II) de la UNAM atribuyen la generación de microsismos en la CDMX a la falla sísmica denominada Plateros-Mixcoac localizada en la alcaldía Álvaro Obregón.
Este fenómeno tiene graves consecuencias para el medio ambiente. Elimina la capa de protección de las plantas, dejándolas desprotegidas a la acción del viento, el frío, la sequía y convirtiéndolas en presa fácil de los parásitos o plagas, que provocan su muerte.
Internet Explorer se retiró este 15 de junio de la competencia de navegadores luego de 27 años de haberse creado como parte del paquete Windows 95.
La revista National Geographic refiere que sí existe la posibilidad de que haya agua en el núcleo de la Tierra y presume que dicho líquido podría ser "la causa de la misteriosa capa cristalina" que lo rodea.
El teorema más popular en matemática es probablemente el llamado Teorema de Pitágoras.
Apolonio de Perga, llamado "El Gran Geómetra", es uno de los tres grandes matemáticos de la antigüedad, mérito que comparte con Euclides y Arquímedes.
Queda claro que AMLO tiene un desconocimiento abismal acerca de la relación entre la ciencia y la política.
Se observaron más microplásticos en los polvos atmosféricos cerca de los centros industriales, comerciales y urbanos como: Tlalnepantla, Iztapalapa y La Merced.
Brasil impulsa la Alianza Global contra el Hambre y la Pobreza con objetivos para 2030
Putin actualiza doctrina que permite respuesta nuclear a un ataque contra Rusia
Sheinbaum y Biden se reúnen en Brasil; abordan migración, seguridad y economía
Trump amenaza con utilizar al Ejército para deportación de migrantes
Oaxaca de Juárez, dos años sin relleno sanitario
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador