Cargando, por favor espere...
Desde el inicio de la cuarta revolución matemática, en las primeras décadas del Siglo XX, el formalismo hilbertiano ha caracterizado el trabajo matemático hasta el día de hoy. Este paradigma histórico del formalismo se caracteriza por:
La matemática es un conjunto de sistemas de axiomas, proposiciones, teoremas, dentro de un lenguaje lógico.
Los axiomas del sistema deben de estar libres de contradicciones.
Toda afirmación dentro de la teoría debe ser demostrada en un número finito de pasos.
El Programa de Hilbert establecía que los conjuntos serían los objetos básicos para iniciar una reconstrucción de toda la matemática, sujeto a un sistema axiomático inicial. Llegó a afirmar: “Nadie nos podrá expulsar del paraíso que para nosotros ha creado Cantor”.
Dentro de varios sistemas axiomáticos que se inventaron, el Sistema de Zermelo–Fraenkel, inventado por Ernst Zermelo (1871-1953) y Abraham Fraenkel (1891-1965), fue el más popular dentro de los matemáticos y el que los Bourbaki adoptaron para reconstruir la matemática de su época.
Según el Programa de Hilbert, este sistema estaba libre de contradicciones y, además, se debería probar la verdad o falsedad de cualquier enunciado matemático dentro del sistema en un número finito de pasos. Este optimismo de David Hilbert, fue tan grande que llegó a decir: Debemos saber, sabremos, es decir, estaba convencido de que todo lo conjeturado en los sistemas axiomáticos es decidible, lo que significa que podemos afirmar su verdad o falsedad. Sin embargo, fue rápidamente cuestionado en 1931 por un joven matemático austriaco llamado Kurt Gödel (1906-1978), quien en su tesis doctoral logró demostrar dos teoremas de incompletitud de la matemática. Estos teoremas establecen que en todo sistema axiomático (que por lo menos describa la aritmética de los números naturales) que esté libre de contradicciones existen enunciados cuya verdad o falsedad no será posible demostrar. Es decir, la matemática no lo demuestra todo, como ingenuamente se cree. Es probable que para poder demostrar que un enunciado sea verdadero o falso se tenga que incrementar el sistema axiomático inicial, pero en este nuevo sistema también existe la posibilidad de conjeturar nuevos enunciados cuya verdad o falsedad no sea posible demostrar. En concreto, Kurt Gödel, demostró que:
1.- Si el sistema axiomático no tiene contradicciones, entonces no es completo.
2.- La consistencia del sistema axiomático no puede demostrarse en el interior del sistema.
Este resultado, considerado el más importante del Siglo XX, echó abajo el optimismo de Hilbert, pero ha pasado desapercibido en el trabajo matemático hasta nuestros días debido al Programa Bourbakiano, que se caracterizó por ser extremadamente formalista y que masificó el conocimiento matemático a través de una serie de libros titulados Elementos de la Matemática, en donde inició un estudio riguroso desde los sistemas lógicos, el sistema axiomático de Zermelo- Fraenkel, la teoría de conjuntos, la topología, el álgebra abstracta y demás temas de la matemática contemporánea. Estos libros han sido la base fundamental en la elaboración de los libros-textos de los años 60-70, con los que se han formado los actuales matemáticos.
Existen conjeturas que han probado su independencia de los sistemas axiomáticos, por ejemplo, la Hipótesis del Continuo, formulada por George Cantor (1845-1918) en 1878, que dice: “No existe un conjunto que sea más grande que el conjunto de los números naturales, y a la vez más pequeño que el conjunto de números reales”. El mismo Kurt Gödel, demostró que no es posible demostrar su refutación dentro del sistema axiomático de la teoría de conjuntos. De otro lado, Paul Cohen (1934-2007) demostró que tampoco se puede demostrar su afirmación dentro del sistema formal.
Desde el punto de vista filosófico, se plantea algunas preguntas como: ¿en qué se basa el conocimiento matemático actual?; si existen enunciados matemáticos indecidibles, ¿dónde está el fundamento de aquellas proposiciones que se tienen como verdaderas? Se pone en debate la noción de verdad matemática en las demostraciones. La reflexión filosófica-matemática es muy relevante en este tema, constituyendo un elemento central para el futuro de la misma matemática. De lo único que estamos seguros es de que la matemática no lo demuestra todo; es muy probable que éste sea el inicio para superar el formalismo hilbertiano y transitar hacia una quinta revolución matemática.
Gran parte del problema ecológico está resuelto hoy día. ¿Qué falta? La ciencia tiene la razón, pero ahora reina la irracionalidad. ¿Quién debe parar esta locura? Los que la sufren. La gran mayoría no tiene consciencia de esto.
La humanidad debe ser capaz de evitar cualquier desastre que extinga la vida en la Tierra.
Este telescopio espacial fue lanzado el sábado mediante el cohete Ariane 5 y es un proyecto liderado por la NASA.
En este Gobierno, los científicos se han sentido agredidos por el Conacyt, que ha denigrado su trabajo. Aun así advirtieron de los peligros y deficiencias de esta nueva Ley, pero al final no fueron escuchados.
El empresario advirtió la existencia de un gran peligro de que las redes sociales se dividan entre extrema derecha y extrema izquierda, lo que generaría "más odio y división en nuestra sociedad".
La Lluvia de Meteoros Delta Acuáridas será más visible en el hemisferio sur.
Tiene como objetivo ampliar la compresión del universo y contará con uno de los espejos más avanzados jamás creados.
La superación de la que habla Marx no niega por completo lo anteriormente construido por la tradición, sino que lo integra y, en algunos casos, lo supone. Aquí lo explico.
Las matemáticas están íntimamente ligadas a la sociedad y a la naturaleza. De hecho, las necesidades prácticas de una sociedad influyen en el desarrollo de la matemática, y entre más desarrollada esté la sociedad, más desarrollada estará esta ciencia.
Blade Runner no es una cinta más de ciencia ficción: es un filme que mueve a la reflexión.
La variante ómicron del coronavirus ya se ha detectado en más de 40 países desde que fuera identificada por primera vez en Sudáfrica a finales de noviembre pasado.
No es raro encontrar bosques enfermos: aquéllos con hojas amarillas o cafés, troncos llenos de grumos resinosos, follaje manchado y, en los casos más graves, la presencia masiva de plantas o insectos parásitos.
La cerveza se utilizaba como ofrenda a los dioses en casi todas las culturas de Europa, el Medio Oriente y Asia. En los países nórdicos (Dinamarca, Finlandia, Islandia, Noruega y Suecia) se ofrecía cerveza a Odín.
La matemática es un producto cultural.
Si la incidencia de plagas y enfermedades no acaba con los bosques, sí reduce significativamente su actividad fotosintética. En los tiempos que corren esto contribuye al calentamiento global.
Gobierno de AMLO sabía del Rancho Izaguirre, revela informe de Guardia Nacional
Vecinos de Azcapotzalco mantienen plantón contra albergue
Mujeres convocan a movilización por rechazo al desafuero de Cuauhtémoc Blanco
Carece comunidad trans de una salud digna y permanece invisibilizada
Juez da 90 días para decidir pena de muerte contra Caro Quintero
Senado rechaza la creación de comisión de investigación para el caso de Teuchitlán
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador