Cargando, por favor espere...

La matemática no lo demuestra todo
Desde el inicio de la cuarta revolución matemática, en las primeras décadas del Siglo XX, el formalismo hilbertiano ha caracterizado el trabajo matemático hasta el día de hoy. Este paradigma histórico del formalismo se caracteriza por...
Cargando...

Desde el inicio de la cuarta revolución matemática, en las primeras décadas del Siglo XX, el formalismo hilbertiano ha caracterizado el trabajo matemático hasta el día de hoy. Este paradigma histórico del formalismo se caracteriza por:

La matemática es un conjunto de sistemas de axiomas, proposiciones, teoremas, dentro de un lenguaje lógico.

Los axiomas del sistema deben de estar libres de contradicciones.

Toda afirmación dentro de la teoría debe ser demostrada en un número finito de pasos.

El Programa de Hilbert establecía que los conjuntos serían los objetos básicos para iniciar una reconstrucción de toda la matemática, sujeto a un sistema axiomático inicial. Llegó a afirmar: “Nadie nos podrá expulsar del paraíso que para nosotros ha creado Cantor”.

Dentro de varios sistemas axiomáticos que se inventaron, el Sistema de Zermelo–Fraenkel, inventado por Ernst Zermelo (1871-1953) y Abraham Fraenkel (1891-1965), fue el más popular dentro de los matemáticos y el que los Bourbaki adoptaron para reconstruir la matemática de su época. 

Según el Programa de Hilbert, este sistema estaba libre de contradicciones y, además, se debería probar la verdad o falsedad de cualquier enunciado matemático dentro del sistema en un número finito de pasos. Este optimismo de David Hilbert, fue tan grande que llegó a decir: Debemos saber, sabremos, es decir, estaba convencido de que todo lo conjeturado en los sistemas axiomáticos es decidible, lo que significa que podemos afirmar su verdad o falsedad. Sin embargo, fue rápidamente cuestionado en 1931 por un joven matemático austriaco llamado Kurt Gödel (1906-1978), quien en su tesis doctoral logró demostrar dos teoremas de incompletitud de la matemática. Estos teoremas establecen que en todo sistema axiomático (que por lo menos describa la aritmética de los números naturales) que esté libre de contradicciones existen enunciados cuya verdad o falsedad no será posible demostrar. Es decir, la matemática no lo demuestra todo, como ingenuamente se cree. Es probable que para poder demostrar que un enunciado sea verdadero o falso se tenga que incrementar el sistema axiomático inicial, pero en este nuevo sistema también existe la posibilidad de conjeturar nuevos enunciados cuya verdad o falsedad no sea posible demostrar. En concreto, Kurt Gödel, demostró que:

1.- Si el sistema axiomático no tiene contradicciones, entonces no es completo.

2.- La consistencia del sistema axiomático no puede demostrarse en el interior del sistema.

Este resultado, considerado el más importante del Siglo XX, echó abajo el optimismo de Hilbert, pero ha pasado desapercibido en el trabajo matemático hasta nuestros días debido al Programa Bourbakiano, que se caracterizó por ser extremadamente formalista y que masificó el conocimiento matemático a través de una serie de libros titulados Elementos de la Matemática, en donde inició un estudio riguroso desde los sistemas lógicos, el sistema axiomático de Zermelo- Fraenkel, la teoría de conjuntos, la topología, el álgebra abstracta y demás temas de la matemática contemporánea. Estos libros han sido la base fundamental en la elaboración de los libros-textos de los años 60-70, con los que se han formado los actuales matemáticos.

Existen conjeturas que han probado su independencia de los sistemas axiomáticos, por ejemplo, la Hipótesis del Continuo, formulada por George Cantor (1845-1918) en 1878, que dice: “No existe un conjunto que sea más grande que el conjunto de los números naturales, y a la vez más pequeño que el conjunto de números reales”. El mismo Kurt Gödel, demostró que no es posible demostrar su refutación dentro del sistema axiomático de la teoría de conjuntos. De otro lado, Paul Cohen (1934-2007) demostró que tampoco se puede demostrar su afirmación dentro del sistema formal.

Desde el punto de vista filosófico, se plantea algunas preguntas como: ¿en qué se basa el conocimiento matemático actual?; si existen enunciados matemáticos indecidibles, ¿dónde está el fundamento de aquellas proposiciones que se tienen como verdaderas? Se pone en debate la noción de verdad matemática en las demostraciones. La reflexión filosófica-matemática es muy relevante en este tema, constituyendo un elemento central para el futuro de la misma matemática. De lo único que estamos seguros es de que la matemática no lo demuestra todo; es muy probable que éste sea el inicio para superar el formalismo hilbertiano y transitar hacia una quinta revolución matemática.


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Noticia anterior
Lenin ante H.G. Wells

Notas relacionadas

Científicos explican que el debilitamiento del campo magnético afecta principalmente la zona espacial sobre Brasil.

“El financiamiento es la columna vertebral de un sistema nacional de ciencia, tecnología e innovación. Desde aquí se aplican las políticas públicas, se incentiva o se corrige".

“Es por demás evidente que la acusación que se ha lanzado desde la FGR es absurda e impropia de un país gobernado bajo principios mínimos de Estado de derecho".

“Las redes sociales en general son una amenaza para la salud mental de los menores”, declaró el alcalde de la ciudad de Nueva York, Eric Adams.

Durante la última década en el Reino Unido, se han identificado 19 nuevos mecanismos genéticos de resistencia en bacterias.

La embriogénesis somática, una técnica biotecnológica, permite reducir los tiempos en que las plantas crecen o la susceptibilidad a contraer enfermedades, permitiendo una mayor producción en el campo.

El equipo de la misión señaló que continúa trabajando para mantener operativa a la nave Voyager 1

¿Alguna vez te has preguntado por qué el cempasúchil tiene ese aroma tan característico? Detrás de su belleza se esconde una historia que explora los compuestos responsables de la “experiencia multisensorial” que ofrece esta flor.

Roscosmos y la Administración Nacional China del Espacio (CNSA) firmaron en su momento un programa conjunto de cooperación en el espacio para el lustro 2018-2022.

Las probabilidades de que cause un daño devastador aumentan.

Los conjuntos han estado presentes desde nuestros primeros años, como consecuencia del paradigma formalista de D. Hilbert y la influencia del grupo Bourbaki en la enseñanza de la matemática desde mediados del Siglo XX.

Congestión nasal, dolor de cabeza, estornudos, fiebre baja, escalofríos… son algunos de los síntomas más comunes del resfriado y la gripe y, aunque todos hemos pasado alguna vez por este malestar, no todo el mundo presenta la misma inmunidad o defensas.

En nuestros días, los científicos discuten con gran preocupación el posible aumento, en las futuras generaciones, de enfermedades o males derivados del efecto ambiental catastrófico más grande después de la época de las postguerras.

“Un lugar como nosotros depende totalmente del ingreso de los visitantes, dependemos de que los visitantes hagan el pago de su boleto para vivir la experiencia", dijo el director general.

En el ámbito de la astronomía, Galileo no solo confirmó que la Tierra se movía en torno al Sol y se burló de los inquisidores del Santo Oficio.