Cargando, por favor espere...
En el mundo de los humanos hay quienes son irracionales y quienes son racionales. No se sabe si el conjunto de los primeros es mayor que el de los segundos, pero una cosa sí sabemos: el rumbo que está tomando la sociedad actual es tan irracional como la sociedad misma. Algo parecido sucede en la matemática, particularmente en el mundo de los números reales. Éstos, como nos enseñaron en la escuela secundaria, se dividen en racionales (los que pueden expresarse en fracciones) e irracionales (los que tienen una infinidad de decimales que no son periódicos).
Ambos términos, racional e irracional, son usados hoy con tanta facilidad, que no nos detenemos a pensar en su significado y su origen. Se sabe que el hombre antiguo comenzó a expresar la longitud de un segmento recto mediante fracciones, es decir, a través de magnitudes medibles o conmensurables. Pero pronto notó la existencia de segmentos que eran inconmensurables (es decir, segmentos no medibles). Uno de esos hombres fue el filósofo y matemático Pitágoras de Samos, quien planteó magníficamente la relación que existe entre la música y las matemáticas y su desempeño en el cultivo del saber. Este genio de la antigua Grecia descubrió la inconmensurabilidad de la diagonal de un cuadrado de lado uno, cuya longitud es igual a la raíz cuadrada de dos.
Hoy, este resultado es fácil de encontrar usando el famoso teorema de Pitágoras, pero en aquellos tiempos provocó una crisis entre la geometría y la aritmética; porque en esa época, ésta consistía solo en la teoría de la proporcionalidad, la cual solamente se aplicaba a magnitudes conmensurables. Fue así como nacieron los números racionales e irracionales, que ahora forman el conjunto de los números reales y que, de niños, nos enseñaron con los saltos de ranitas y sapitos.
El otro número, quizás más antiguo que el descubierto por Pitágoras, fue el número π, estudiado y desarrollado por la cultura sumeria, china y egipcia. Esta constante representó un avance en la construcción de pirámides y tumbas con bases circulares, esféricas y cilíndricas, objetos que requerían área y volumen.
La aparición del número π y la raíz cuadrada de dos originó una serie de números hermanos y amigos conocidos hoy como la raíz cuadrada de 3, 5, 7, 8, 10 11, etc., todos, desde luego, irracionales. Pero no solo eso, en la lista de los irracionales apareció también la constante e, reconocida y estudiada por el matemático escocés John Napier y divulgada después por el suizo Leonhard Euler, el matemático más prolífico de todos los tiempos.
El conjunto de los números arriba mencionados vino a completar la recta real. Es decir, la aparición de esos números fue necesaria para que la matemática tuviera una base sólida. Hoy, el estudiante no puede continuar sus estudios superiores sin pasar por los números reales, pues éstos son la base para comprender el análisis matemático y otras ramas de la matemática.
Pero llegar a la comprensión de la irracionalidad, no fue tarea fácil para el hombre. Tuvo que entender, primero, el concepto del infinito. Por ejemplo, en el Siglo XIX, el desarrollo de la matemática insinuaba que los números racionales e irracionales no tenían el mismo tamaño, aunque ambos fueran infinitos. Tuvo que venir Georg Cantor para comparar los tamaños de esos números con la siguiente ley: dos conjuntos M y N son equivalentes, si es posible ponerlos mediante una función mediante la cual se compruebe que a cada elemento de uno de ellos le corresponda uno y solo un elemento del otro. Con esta herramienta, Cantor demostró que el tamaño de los irracionales es más grande que el de los racionales y que es el único conjunto que completa a los racionales para formar la recta real.
El resultado de Cantor sobre la irracionalidad de un número vino a enseñar al hombre que la naturaleza y el universo son más complejos de lo que parecen. Esa irracionalidad vino a demostrar que el tiempo es continuo y que el movimiento realizado por cualquier animal viviente en la naturaleza es continuo. En síntesis, la irracionalidad ayuda al hombre a comprender la continuidad y la discontinuidad de la materia.
En la novela Los crímenes de Oxford, su autor, el doctor en Matemáticas y escritor argentino Guillermo Martínez, es un ejemplo de convergencia de estas dos áreas aparentemente disímiles: matemáticas y literatura.
Alguna vez escuché decir que la matemática no es una ciencia al no someterse al método científico, pero en ciertos trabajos se ha exigido a los estudiantes utilizar el método científico, ¿cómo es posible? Aquí explico.
La variante ómicron del coronavirus ya se ha detectado en más de 40 países desde que fuera identificada por primera vez en Sudáfrica a finales de noviembre pasado.
La tecnología hace posible que las ventas en línea lleguen a más personas, sin importar donde se encuentren; por lo que cada vez más usuarios de la red realizan compras a través de internet.
El hábito tan frecuente de beber café ha traído consigo una gran polémica acerca de si es bueno o malo beber café. Ante esto, múltiples investigaciones se han centrado en responder tal cuestión
Los Cordyceps infectan insectos que son dominantes y suelen propagarse como plagas
volviendo al ejemplo del futbol, las vacunas son el equivalente a jugar un partido amistoso a principio de temporada, solo nos preparan para los posibles escenarios de una “competencia real”.
La intención es lograr un lente de material blando que logre un acercamiento, en un primer prototipo, de 32 por ciento con respecto a la visualización normal.
Von Neumann fue considerado como superdotado, ya que desde los seis años ya sabía dividir, hablar griego antiguo, francés, alemán y latín, y a sus ocho años ya dominaba el cálculo diferencial e integral.
Trece mujeres de la Universidad de Harvard marcaron un punto de inflexión en la historia en una época donde las mujeres generalmente eran excluidas de participar en el ámbito científico.
Las muertes por sobredosis de fentanilo alcanzaron otro récord en EE. UU. En sólo un año (2021-2022) casi 109 mil personas perdieron la vida por consumir esta sustancia.
El chatbot DeepSeek apuesta por el “código abierto”, lo que implica bajos costos y alta eficiencia.
La sonda Mars Express halló “inmensos” depósitos de 3.7 kilómetros de espesor, ubicados bajo el suelo del ecuador de Marte, estructuras que sugieren la presencia de hielo.
El pequeño Pablo contó con la asesoría de la profesora Laura Julia Sánchez; su proyecto se centra en la conservación de una especie crucial para la biodiversidad y los ecosistemas acuáticos de las barrancas de Cuernavaca.
Cuando se habla de entrenamiento deportivo y su dosificación en los atletas, entran en juego diversas variantes que influirán en resultados ya sea positivos o negativos.
Dos caras en Los Cabos: agua en exceso para turistas y colonias con sed
Al borde de la quiebra, EE. UU. extorsiona a socios y aliados
La demagogia del millón de viviendas
Crecen la desigualdad económica y el poder de la plutocracia
Cultura narco: reflejo estructural de un fenómeno sistémico
Crisis por desapariciones, impunidad y complicidades
Escrito por Romeo Pérez
Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.