Cargando, por favor espere...
Nos encontramos en la cuarta revolución matemática, paradigma conocido como el Formalismo y el estructuralismo, iniciada por David Hilbert, quien tuvo una influencia fundacional en esta corriente epistemológica de la matemática. Una de las bases de esta corriente es considerar al cuerpo de conocimiento matemático desprovisto de su historia y su filosofía; producto de ello, en la formación de los matemáticos actuales, se le da un valor muy marginal (o nulo) a la asignatura de Historia de la Matemática, y ni qué decir a la Filosofía de la Matemática. La misma concepción formalista de la matemática hace innecesario este conocimiento para generar nuevos teoremas, que muchas veces no tienen relevancia en el desarrollo de la matemática. En mi opinión, es una falencia que la comunidad matemática debería debatir en algún momento.
Un grupo de brillantes matemáticos franceses, autodenominado Bourbaki desarrolló, desde las primeras décadas del Siglo XX, un programa fundacional de la matemática –al estilo griego de los Elementos, de Euclides– con gran influencia en el trabajo matemático contemporáneo, en la educación y en la visión estructuralista que adquirieron otras áreas científicas y sociales.
El programa fundacional de los Bourbaki fue plasmado en dos libros titulados Elementos de Matemáticas; en ellos, la Historia de la Matemática aparece como elemento marginal, independiente del contenido matemático con características estrictamente formales, en donde el concepto de conjunto se convierte en el elemento genético de la matemática. Se pretende así mostrar que no es necesario conocer la historia para comprender los conceptos fundamentales, aún más, que para generar teoremas dentro de un sistema formal también puede prescindirse del conocimiento histórico y filosófico.
Sin embargo, en 1968 apareció el libro Elèments d’histoire des mathèmatiques, traducido al español en 1972 como Elementos de historia de las matemáticas, por Alianza Editorial. En esta obra se encuentran las notas históricas de la serie Elementos de Matemática. En su prólogo dice muy concretamente el propósito de la obra: “el lector no encontrará prácticamente en estas notas ninguna referencia bibliográfica o anecdótica sobre los matemáticos que aparecen; se ha intentado fundamentalmente, para cada teoría, poner de manifiesto cuáles han sido sus ideas directrices, y la forma en que estas ideas se han desarrollado y han actuado unas sobre otras”.
Elementos de la historia de la matemática trata aspectos históricos de los fundamentos de las matemática: lógica, teoría de conjuntos, la evolución del álgebra abstracta, lineal y multilineal, polinomios y cuerpos conmutativos, cuerpos ordenados, álgebra conmutativa y no conmutativa, formas cuadráticas, geometría elemental, espacios topológicos, espacios uniformes, espacios de n-dimensiones, espacios métricos, cálculo infinitesimal, desarrollos asintóticos, espacios funciones, espacios vectoriales topológicos, medidas de Haar, etc. Algunos aspectos apenas aparecen como la teoría de números, la teoría de funciones analíticas y de las ecuaciones diferenciales ordinarias o parciales, esto es debido a que hasta el momento en que se escribió el libro, los Bourbaki no habían desarrollado estos temas en sus libros Elementos de Matemática.
En general, Elementos de la Historia de la Matemática, de los Bourbaki, privilegia la génesis de las ideas, la evolución conceptual a manera de información para un lector provisto de una sólida cultura matemática. Es por ello que es de difícil lectura, incluso para matemáticos especialistas en líneas específicas. Este libro contribuyó aún más al alejamiento del pensamiento histórico-filosófico de la matemática, del trabajo matemático. Es un libro que requiere una reescritura, complementando información que hoy se conoce, agregando otros temas que también son relevantes en la matemática fundamental.
Si bien es cierto que la Historia de Matemática debe establecer la génesis de conceptos e ideas y su evolución conceptual a través del tiempo, esto dificulta al matemático formalista actual. En general, las asignaturas de Historia de la Matemática se limitan a contar la biografía de los matemáticos, y algunas ideas sueltas sin profundidad o a veces desarrollan algunos temas muy puntuales y evitan la interconexión de los conceptos matemáticos que se evidencian cuando se establece una unidad coherente del pensamiento matemático a través del tiempo. Esta manera de ver la Historia de la Matemática, como un saber que integre las principales ideas desde su génesis hasta su forma moderna, bajo la praxis matemática, desde el hacer matemático, debería contribuir a la formación de un futuro matemático a fin de establecer las componentes esenciales para el desarrollo de su línea de investigación, haciéndolo capaz de ver el panorama alrededor para detectar problemas matemáticos interesantes y relevantes para el desarrollo de su disciplina. Se evitaría publicar por publicar, o publicar teoremas intrascendentes, que sólo sirven para elevar el ego de los matemáticos.
Aunque el movimiento feminista ha logrado ciertos avances, como el derecho al voto y otros, hoy día la mayoría de las demandas de las mujeres siguen sin resolverse, entre otras, la brecha salarial entre hombres y mujeres.
Así como en la narrativa histórica oficial existen “héroes”, también existe su opuesto.
Fue nombrado miembro de la Real Academia de Ciencias Exactas, Físicas y Naturales en 1983; entre 1991 y 1993 fue presidente de la Comisión Internacional de Instrucción Matemática (ICMI).
El método axiomático en la geometría es quizás el aporte más notable que ha dado la matemática a la humanidad.
La característica esencial en su trabajo era que no estaba interesado en resolver problemas sino en la comprensión conceptual profunda y completa de las estructuras que se van tejiendo en el intrincado mundo matemático.
Esta biografía resalta los rasgos de carácter más sobresalientes del general Vicente Guerrero: su inquebrantable voluntad de lucha.
Mientras el trabajo matemático tiene reglas, axiomas, y su libertad está en función de estar gobernado por sistemas formales; en el trabajo filosófico...
Un matemático chileno dijo en una entrevista: “una cosa es escribir papers y otra cosa es saber matemática… recomendaría a los jóvenes que primero se dediquen a saber matemática y después se dediquen a escribir papers si desean”.
Hablando en términos marxistas, la religión fue una necesidad histórica.
Son historias de viajeros que por motivos de conquista económica, política, religiosa, curiosidad científica o espíritu de aventura visitaron otras regiones del mundo donde hallaron paisajes, edificaciones y grupos humanos diferentes a ellos.
Antolorgía de poetisas del 27, de Emilio Miró, es un importante esfuerzo para revalorar la obra de cinco poetisas españolas de la “Generación del 27”, entre ellas, Concha Méndez y Rosa Chacel.
El alejamiento de Alexander Grothendieck del mundo académico empezó en 1973, cuando decidió abandonar París y se estableció en un pequeño pueblo (Villecun) de Montpellier.
Las prácticas humanas de distinción tienen larga data.
La matemática es un producto cultural.
El séptimo canto de Más allá canta el mar, la gran epopeya del poeta cubano Regino Pedroso.
Terremoto en Rusia desencadena alerta de tsunami en el Pacífico; Sudamérica toma medidas urgentes
Acusan a embajador de México en Canadá de nexos con el crimen organizado en Quintana Roo
México incrementa 33.5% de impuestos para importaciones por paquetería
SSa confirma primer caso mortal con antecedente de infección por gusano barrenador
Fase 5 de hambruna en Gaza y la neutralidad morenista
Vigencia del manifiesto comunista
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador