Cargando, por favor espere...
Eudoxo de Cnido y Arquímedes de Siracusa son considerados los fundadores del cálculo infinitesimal, aunque los filósofos Heráclito, Demócrito, Leucipo y Aristóteles desempeñaron también un papel determinante en el desarrollo de esta rama de la matemática. Eudoxo fue quien resolvió formalmente la crisis matemática relacionada con las magnitudes inconmensurables. En la antigua Grecia se pensaba que todo podía ser medido con exactitud, pero cuando aparecieron los números irracionales como raíz de dos, obtenido de la diagonal de un cuadrado de lado uno, y raíz de cinco, obtenido de la diagonal de un rectángulo de lados uno y dos, los matemáticos observaron que tales diagonales no se podían medir por una unidad común; además no podían expresarse como la razón de dos números enteros. Comenzaron a cuestionarse cómo era posible no poder expresar esos números irracionales como razón de dos números enteros, si eran obtenidos de los mismos números como catetos del cuadrado o del rectángulo. Aquí es donde aparece el genio de Cnido, quien resolvió de manera brillante y rigurosa esta crisis mediante su Teoría de Proporción, recuperada en el Libro V de los Elementos de Euclides de Alejandría.
El astrónomo y matemático de la antigua Grecia planteó que una magnitud, a diferencia de los números que son discretos, es continua. Y definió la proporción como la razón entre dos magnitudes, independientemente si eran conmensurables o no. Este razonamiento permitió a Eudoxo crear su método exhaustivo, que vino a resolver problemas relacionados con ángulos, segmentos, áreas y volúmenes que variaban de manera continua y que son también magnitudes. El método de agotamiento, llamado también así, que sirve para hallar áreas de figuras no rectilíneas como círculos, parábolas, conos, elipses, etc., lo obtuvo Eudoxo de la ley propuesta por su contemporáneo Aristóteles, la cual sostiene que “toda magnitud finita puede ser agotada mediante la sustracción de una cantidad determinada”, aunque reformulada por Euclides, queda como como sigue: “Dadas dos magnitudes desiguales, si se quita de la mayor una (magnitud) mayor que su mitad y de la que queda, una magnitud mayor que su mitad y así sucesivamente, quedará una magnitud que será menor que la magnitud menor dada” (Elementos de Euclides, Libro X, Proposición 1).
Usando esta proposición, Eudoxo usó figuras inscritas más simples como el triángulo, el cuadrado, los polígonos o poliedros para acercarse tanto como se quería al área del círculo de radio uno, y volúmenes de pirámides y conos. Para aproximarse al área del círculo, Eudoxo inscribió en él un polígono regular y calculó el área de cada polígono conforme iba incrementando sus lados. Comenzó con un cuadrado, cuya diagonal pasaba por el centro del círculo y después le agregó más lados, y fue determinando el área de cada una de estas figuras geométricas. Con las técnicas básicas de las matemáticas que usamos hoy, es posible notar inmediatamente que el área del cuadrado es dos, muy alejado, desde luego, del valor del número irracional; pero si el polígono inscrito tiene lados 6, 8, 10, 12, 14 hasta 200, por ejemplo, las áreas correspondientes serían respectivamente 2.598, 2.828, 2.939, 3, 3.037 y 3.141. Es claro que si continuamos incrementando los lados del polígono, éste va tomando la figura del círculo, es decir, incrementado los lados del polígono un número suficientemente grande, hasta el infinito, obtendríamos, por ejemplo, el valor de π.
Con el mismo método, Eudoxo demostró formalmente que el volumen de un cono es la tercera parte del de un cilindro y el de una pirámide, una tercera parte del de un prisma, pero con una condición: que todos tuvieran una misma base y altura igual.
El método obtenido por el discípulo de Platón dio nacimiento formal al cálculo infinitesimal e influyó significativamente en los matemáticos posteriores a Eudoxo, particularmente en Arquímedes de Siracusa, quien no solo aplicó dicho método, sino que agregó uno más: el método de reducción al absurdo, que consolidó la obtención del área de las figuras curvilíneas. Por el ejemplo, Arquímedes no se limitó a inscribir polígonos en el círculo de radio uno, sino también a circunscribirlos. Fue así como demostró, por medio del método de reducción al absurdo, que el área de ambos polígonos coincide. Así fue como se cimentaron las bases del cálculo infinitesimal.
La realidad es más compleja de lo que la ciencia sabe de ella y nos damos cuenta.
Cuando se habla de entrenamiento deportivo y su dosificación en los atletas, entran en juego diversas variantes que influirán en resultados ya sea positivos o negativos.
Las estatuillas de Venus caracterizaron el arte europeo del Paleolítico, la etapa prehistórica más antigua y larga del Homo sapiens.
¿Por qué las plantas generan frutos? Porque como todos los seres vivos, buscan perpetuarse en el mundo. El fruto es una adaptación exitosa de las plantas para lograr esta finalidad.
Los mapas son representaciones gráficas de la superficie terrestre.
“Estamos cerca de crear lo que se llama oncovacunas, vacunas contra el cáncer y medicamentos inmunomoduladores de nueva generación", afirmó el presidente de Rusia, Vladimir Putin.
Congestión nasal, dolor de cabeza, estornudos, fiebre baja, escalofríos… son algunos de los síntomas más comunes del resfriado y la gripe y, aunque todos hemos pasado alguna vez por este malestar, no todo el mundo presenta la misma inmunidad o defensas.
Dos especies vegetales que no corren con la misma suerte cuando llegan las festividades navideñas.
En la novela Los crímenes de Oxford, su autor, el doctor en Matemáticas y escritor argentino Guillermo Martínez, es un ejemplo de convergencia de estas dos áreas aparentemente disímiles: matemáticas y literatura.
Cuántas veces hemos tenido la duda de si tomar un medicamento alopático o un té para curar algún malestar o disminuir el síntoma de una enfermedad.
Evariste Galois fue uno de los grandes genios de la humanidad y el matemático más joven de la historia matemática.
El Eclipse total de Sol tendrá una duración de 4 minutos y 28 segundos
¡La carrera comienza! La marca cuyos autos alcanzan los 340 kilómetros por hora está en riesgo. Esto en el reciente estreno de la película Ferrari, de Michael Mann.
Un profundo conocimiento de la diversidad de climas y suelos ejerce una influencia positiva en la productividad de cultivos específicos, desde los campos de aguacate en Michoacán hasta los de agave para la producción de tequila en Jalisco.
Los bosques de oyamel (familia Pinaceae) constituyen un ecosistema que se desarrolla a una altitud de entre dos mil y tres mil 600 metros sobre el nivel del mar y se pueden encontrar en las zonas montañosas de México.
Acusan a Conagua de ocultar permisos irregulares y bloquear vigilancia ciudadana
Murió José “Pepe” Mujica, expresidente de Uruguay
Bloqueo ganadero cuesta a México 5.1 millones de dólares
Persiste desigualdad salarial entre docentes
Cierran carretera el Hidalgo por socavón
Aspirantes a Ayuntamientos de Veracruz solicitan protección
Escrito por Romeo Pérez
Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.