Cargando, por favor espere...

Eudoxo y el cálculo infinitesimal
El método obtenido por el discípulo de Platón dio nacimiento formal al cálculo infinitesimal e influyó significativamente en los matemáticos posteriores a Eudoxo.
Cargando...

Eudoxo de Cnido y Arquímedes de Siracusa son considerados los fundadores del cálculo infinitesimal, aunque los filósofos Heráclito, Demócrito, Leucipo y Aristóteles desempeñaron también un papel determinante en el desarrollo de esta rama de la matemática. Eudoxo fue quien resolvió formalmente la crisis matemática relacionada con las magnitudes inconmensurables. En la antigua Grecia se pensaba que todo podía ser medido con exactitud, pero cuando aparecieron los números irracionales como raíz de dos, obtenido de la diagonal de un cuadrado de lado uno, y raíz de cinco, obtenido de la diagonal de un rectángulo de lados uno y dos, los matemáticos observaron que tales diagonales no se podían medir por una unidad común; además no podían expresarse como la razón de dos números enteros. Comenzaron a cuestionarse cómo era posible no poder expresar esos números irracionales como razón de dos números enteros, si eran obtenidos de los mismos números como catetos del cuadrado o del rectángulo. Aquí es donde aparece el genio de Cnido, quien resolvió de manera brillante y rigurosa esta crisis mediante su Teoría de Proporción, recuperada en el Libro V de los Elementos de Euclides de Alejandría.

El astrónomo y matemático de la antigua Grecia planteó que una magnitud, a diferencia de los números que son discretos, es continua. Y definió la proporción como la razón entre dos magnitudes, independientemente si eran conmensurables o no. Este razonamiento permitió a Eudoxo crear su método exhaustivo, que vino a resolver problemas relacionados con ángulos, segmentos, áreas y volúmenes que variaban de manera continua y que son también magnitudes. El método de agotamiento, llamado también así, que sirve para hallar áreas de figuras no rectilíneas como círculos, parábolas, conos, elipses, etc., lo obtuvo Eudoxo de la ley propuesta por su contemporáneo Aristóteles, la cual sostiene que “toda magnitud finita puede ser agotada mediante la sustracción de una cantidad determinada”,  aunque reformulada por Euclides, queda como como sigue: “Dadas dos magnitudes desiguales, si se quita de la mayor una (magnitud) mayor que su mitad y de la que queda, una magnitud mayor que su mitad y así sucesivamente, quedará una magnitud que será menor que la magnitud menor dada” (Elementos de Euclides, Libro X, Proposición 1). 

Usando esta proposición, Eudoxo usó figuras inscritas más simples como el triángulo, el cuadrado, los polígonos o poliedros para acercarse tanto como se quería al área del círculo de radio uno, y volúmenes de pirámides y conos. Para aproximarse al área del círculo, Eudoxo inscribió en él un polígono regular y calculó el área de cada polígono conforme iba incrementando sus lados. Comenzó con un cuadrado, cuya diagonal pasaba por el centro del círculo y después le agregó más lados, y fue determinando el área de cada una de estas figuras geométricas. Con las técnicas básicas de las matemáticas que usamos hoy, es posible notar inmediatamente que el área del cuadrado es dos, muy alejado, desde luego, del valor del número irracional; pero si el polígono inscrito tiene lados 6, 8, 10, 12, 14 hasta 200, por ejemplo, las áreas correspondientes serían respectivamente 2.598, 2.828, 2.939, 3, 3.037 y 3.141. Es claro que si continuamos incrementando los lados del polígono, éste va tomando la figura del círculo, es decir, incrementado los lados del polígono un número suficientemente grande, hasta el infinito, obtendríamos, por ejemplo, el valor de π.

Con el mismo método, Eudoxo demostró formalmente que el volumen de un cono es la tercera parte del de un cilindro y el de una pirámide, una tercera parte del de un prisma, pero con una condición: que todos tuvieran una misma base y altura igual.

El método obtenido por el discípulo de Platón dio nacimiento formal al cálculo infinitesimal e influyó significativamente en los matemáticos posteriores a Eudoxo, particularmente en Arquímedes de Siracusa, quien no solo aplicó dicho método, sino que agregó uno más: el método de reducción al absurdo, que consolidó la obtención del área de las figuras curvilíneas. Por el ejemplo, Arquímedes no se limitó a inscribir polígonos en el círculo de radio uno, sino también a circunscribirlos. Fue así como demostró, por medio del método de reducción al absurdo, que el área de ambos polígonos coincide. Así fue como se cimentaron las bases del cálculo infinitesimal.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

El Meteorito de Allende abrió “una ventana para entender el origen del Sistema Solar” y junto a otro célebre meteorito “mexicano” de hace 66 millones de años en el área submarina de Chicxulub, ha aportado importantes conocimientos científicos sobre la historia de la Tierra.

El récord del año más cálido pasó de 0.17 grados centígrados en 2016 a 14.98 grados centígrados en 2023.

Los artrópodos fueron el grupo más abundante desde que la vida animal apareció en la Tierra

Los mapas son representaciones gráficas de la superficie terrestre.

Un profundo conocimiento de la diversidad de climas y suelos ejerce una influencia positiva en la productividad de cultivos específicos, desde los campos de aguacate en Michoacán hasta los de agave para la producción de tequila en Jalisco.

La irracionalidad ayuda al hombre a comprender la continuidad y la discontinuidad de la materia.

“Con esta investigación buscan una solución a la adulteración, que con el paso del tiempo se ha vuelto más sostificada, por lo que los procedimientos analíticos también de ser cada vez mejores”.

El fenómeno astronómico tendrá lugar la noche del día de hoy jueves 13 de marzo alrededor de las 23:00 horas, alcanzando su máximo a las 00:26 horas del viernes 14.

En las ideas de Anaximandro no estaban presentes ideas esenciales de la ciencia moderna.

Como los animales de carga, nuestra rutina diaria se limita a dormir, alimentarnos y trabajar.

Alguna vez escuché decir que la matemática no es una ciencia al no someterse al método científico, pero en ciertos trabajos se ha exigido a los estudiantes utilizar el método científico, ¿cómo es posible? Aquí explico.

En este artículo defenderemos, desde la dimensión antropológica de la matemática, una de las afirmaciones que han concitado discusiones entre matemáticos y filósofos.

El androcentrismo es la palabra empleada para hacer referencia a la masculinización de lo cotidiano en las prácticas sociales, culturales y en el ámbito científico.

El Presidente López Obrador desea transformar al modelo educativo actual del CIDE en brazo ideológico de la 4ª T, pero se limita a imponer un director obsecuente sin precisar qué tipo de economía reemplazará al “neoclasisismo” y al “neoliberalismo”.

La obra aplica de “forma magistral” el método de análisis marxista-leninista, que permite al autor pronosticar los eventos que se desarrollaron en años posteriores, en los que los principales países imperialistas del mundo buscan mantener su hegemonía.