Cargando, por favor espere...

Tlaixaxiliztli
Eudoxo y el cálculo infinitesimal
El método obtenido por el discípulo de Platón dio nacimiento formal al cálculo infinitesimal e influyó significativamente en los matemáticos posteriores a Eudoxo.


Eudoxo de Cnido y Arquímedes de Siracusa son considerados los fundadores del cálculo infinitesimal, aunque los filósofos Heráclito, Demócrito, Leucipo y Aristóteles desempeñaron también un papel determinante en el desarrollo de esta rama de la matemática. Eudoxo fue quien resolvió formalmente la crisis matemática relacionada con las magnitudes inconmensurables. En la antigua Grecia se pensaba que todo podía ser medido con exactitud, pero cuando aparecieron los números irracionales como raíz de dos, obtenido de la diagonal de un cuadrado de lado uno, y raíz de cinco, obtenido de la diagonal de un rectángulo de lados uno y dos, los matemáticos observaron que tales diagonales no se podían medir por una unidad común; además no podían expresarse como la razón de dos números enteros. Comenzaron a cuestionarse cómo era posible no poder expresar esos números irracionales como razón de dos números enteros, si eran obtenidos de los mismos números como catetos del cuadrado o del rectángulo. Aquí es donde aparece el genio de Cnido, quien resolvió de manera brillante y rigurosa esta crisis mediante su Teoría de Proporción, recuperada en el Libro V de los Elementos de Euclides de Alejandría.

El astrónomo y matemático de la antigua Grecia planteó que una magnitud, a diferencia de los números que son discretos, es continua. Y definió la proporción como la razón entre dos magnitudes, independientemente si eran conmensurables o no. Este razonamiento permitió a Eudoxo crear su método exhaustivo, que vino a resolver problemas relacionados con ángulos, segmentos, áreas y volúmenes que variaban de manera continua y que son también magnitudes. El método de agotamiento, llamado también así, que sirve para hallar áreas de figuras no rectilíneas como círculos, parábolas, conos, elipses, etc., lo obtuvo Eudoxo de la ley propuesta por su contemporáneo Aristóteles, la cual sostiene que “toda magnitud finita puede ser agotada mediante la sustracción de una cantidad determinada”,  aunque reformulada por Euclides, queda como como sigue: “Dadas dos magnitudes desiguales, si se quita de la mayor una (magnitud) mayor que su mitad y de la que queda, una magnitud mayor que su mitad y así sucesivamente, quedará una magnitud que será menor que la magnitud menor dada” (Elementos de Euclides, Libro X, Proposición 1). 

Usando esta proposición, Eudoxo usó figuras inscritas más simples como el triángulo, el cuadrado, los polígonos o poliedros para acercarse tanto como se quería al área del círculo de radio uno, y volúmenes de pirámides y conos. Para aproximarse al área del círculo, Eudoxo inscribió en él un polígono regular y calculó el área de cada polígono conforme iba incrementando sus lados. Comenzó con un cuadrado, cuya diagonal pasaba por el centro del círculo y después le agregó más lados, y fue determinando el área de cada una de estas figuras geométricas. Con las técnicas básicas de las matemáticas que usamos hoy, es posible notar inmediatamente que el área del cuadrado es dos, muy alejado, desde luego, del valor del número irracional; pero si el polígono inscrito tiene lados 6, 8, 10, 12, 14 hasta 200, por ejemplo, las áreas correspondientes serían respectivamente 2.598, 2.828, 2.939, 3, 3.037 y 3.141. Es claro que si continuamos incrementando los lados del polígono, éste va tomando la figura del círculo, es decir, incrementado los lados del polígono un número suficientemente grande, hasta el infinito, obtendríamos, por ejemplo, el valor de π.

Con el mismo método, Eudoxo demostró formalmente que el volumen de un cono es la tercera parte del de un cilindro y el de una pirámide, una tercera parte del de un prisma, pero con una condición: que todos tuvieran una misma base y altura igual.

El método obtenido por el discípulo de Platón dio nacimiento formal al cálculo infinitesimal e influyó significativamente en los matemáticos posteriores a Eudoxo, particularmente en Arquímedes de Siracusa, quien no solo aplicó dicho método, sino que agregó uno más: el método de reducción al absurdo, que consolidó la obtención del área de las figuras curvilíneas. Por el ejemplo, Arquímedes no se limitó a inscribir polígonos en el círculo de radio uno, sino también a circunscribirlos. Fue así como demostró, por medio del método de reducción al absurdo, que el área de ambos polígonos coincide. Así fue como se cimentaron las bases del cálculo infinitesimal.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

¡Es hoy! Luna de sangre será visible en América

El fenómeno astronómico tendrá lugar la noche del día de hoy jueves 13 de marzo alrededor de las 23:00 horas, alcanzando su máximo a las 00:26 horas del viernes 14.

esp.jpg

Toda la matemática clásica, desde la época de los griegos, se construyó evitando considerar un infinito actual, aunque de manera subliminal siempre se ha usado. Aquí te explico.

flor.jpg

La Nochebuena era una flor predilecta para los aztecas, zapotecas, zoques, chontales y totonacas.

clionautasa.jpg

La relación entre la ciencia y el dinero, entre la técnica y el negocio, ha sido ampliamente discutida por los grandes pensadores de la humanidad.

Vavilov.jpg

México no solo es centro de origen de muchas especies cultivadas, sino también de muchas especies forestales y florísticas.

FERTI.jpg

En nuestro país, el uso indiscriminado de fertilizantes químicos en la actividad agrícola se ha vuelto muy importante debido al empobrecimiento de los suelos.

red.jpg

Investigadores del Instituto Tecnológico de Massachusetts demostraron la existencia de una "red lingüística universal" en hablantes de 45 lenguas, un hallazgo que podría revelar los procesos cognitivos base de todo el lenguaje hablado.

esp.jpg

La investigación de Legendre se caracterizó por materializarse en la publicación de libros importantes para la enseñanza, entre las que destacan Elementos de geometría (1794) y Ensayos sobre la teoría de números (1798).

zoom-lentillas.jpg

La intención es lograr un lente de material blando que logre un acercamiento, en un primer prototipo, de 32 por ciento con respecto a la visualización normal.

Herramientas.jpg

Investigadores, indican que hace dos millones de años los primeros humanos tenían la capacidad y la tecnología necesarias para explotar de forma continua una variedad de hábitats cambiantes.

ci.jpg

Con todos los avances y beneficios que la IA ha aportado a la ciencia, también surgen desafíos y preocupaciones; ahora hay preguntas sobre el papel del científico en este nuevo panorama.

abejas.jpg

En México hay aproximadamente dos mil especies de abejas nativas. A diferencia de las melíferas, que viven en colonias (colmenas) con su reina y obreras, la mayoría de las nativas son solitarias.

ci.jpg

El ChatGPT funciona como un programa que responde preguntas, genera texto y sostiene charlas, simulando una conversación real entre personas. Es muy útil, sin embargo, también tiene algunas limitaciones.

caf.jpg

El hábito tan frecuente de beber café ha traído consigo una gran polémica acerca de si es bueno o malo beber café. Ante esto, múltiples investigaciones se han centrado en responder tal cuestión

ab.jpg

Si la incidencia de plagas y enfermedades no acaba con los bosques, sí reduce significativamente su actividad fotosintética. En los tiempos que corren esto contribuye al calentamiento global.