Cargando, por favor espere...
El resultado matemático más famoso de la historia es, sin duda, el llamado Teorema de Pitágoras, aunque existe evidencia de que las antiguas civilizaciones egipcia y babilónica lo conocían empíricamente, se le atribuye a Pitágoras, y a su escuela, por haberlo demostrado geométricamente. El gráfico es ilustrativo por el significado geométrico de este bello resultado matemático.
Pitágoras y su escuela crearon el método del álgebra geométrica, que establece identidades algebraicas escolares, usando figuras geométricas y que fueron capaces de resolver distintos tipos de ecuaciones cuadráticas.
El misterioso Pitágoras creía en el idealismo dualista, es decir, suponía la existencia de dos mundos: el primero constituido por los objetos y los hechos empíricos, y el segundo por objetos no empíricos (matemáticos).
Para Pitágoras, el conocimiento no se agota con lo empírico, porque su esencia está en el segundo, se encuentra donde está el número, concebido como una relación abstracta (no de cálculo). Para Pitágoras, el número representa la esencia del mundo en armonía y unidad. La concepción del idealismo dual fue profundizada después por Platón.
Para Pitágoras, comprender el mundo significaba concebir la armonía en términos de números; quien lo lograba, se volvía divino e inmortal. También fue el primero en hablar sobre la conexión de ambos mundos mediante modelos o isomorfismos que representan objetos del primer mundo con los del segundo. Nació la idea moderna de modelamiento matemático; sin embargo, a Pitágoras le interesaba más la pureza de los objetos matemáticos, pues era un matemático por excelencia.
Una de las discusiones filosóficas más controversiales de esa época era saber ¿qué es lo infinitamente pequeño? Para Pitágoras, el punto era lo más pequeño posible, el cual componía el espacio físico de las cosas, tenía una extensión –era medible– y, como todo segmento, era un número finito de puntos en hilera, y el espacio físico un conglomerado de puntos. Con esta idea, Pitágoras afirmaba: Si un segmento se divide en partes iguales, a cada parte lo llamó parte oblicua del segmento; hoy en día lo llamamos unidad de medida. Por ejemplo, si un segmento es dividido en 10 partes iguales, cada parte es llamado parte oblicua del segmento (hoy día, podría ser cada parte oblicua un centímetro o cualquier unidad de medida).
Para Pitágoras, siempre existe esta parte oblicua; o sea, siempre es posible medir un segmento en unidades de medida, y lo llamó conmensurables. Con esta misma concepción, para el caso de dos segmentos, Pitágoras suponía la existencia de una unidad mínima (parte oblicua) común, que midiera ambos segmentos. Dicha teoría estuvo basada en la unidad de todas las cosas que representan los números. Tal postura filosófica tuvo una ruptura cuando uno de sus discípulos, llamado Hipaso de Metaponte, descubrió que en un triángulo rectángulo isósceles no existía esta unidad común entre un cateto y la hipotenusa del triángulo. Este hecho enfureció a Pitágoras, de quien se cuenta que ordenó matar a Hipaso, quien se convirtió en el primer mártir de la matemática. El secretismo de la secta pitagórica ayudó a que esto no se divulgara, pero Hipaso ya lo había contradicho.
Los segmentos no medibles, llamados inconmensurables, fueron prohibidos por los pitagóricos y para algunos historiadores, esta primera crisis en la matemática trajo como consecuencia una ruptura de la concepción filosófica de Pitágoras, pero no de la matemática. Pasaron unos 200 años para que el matemático griego Eudoxio formulara un avance en la comprensión de los inconmensurables, llamados también irracionales. Esta comprensión no fue final, porque lo infinitamente pequeño permaneció como el horror de los griegos en las generaciones futuras de matemáticos, y solo hasta 1858 el enigma fue aclarado con la construcción formal de los números reales por el matemático Richard Dedekind (1831-1916).
Zenón de Elea, discípulo de Parménides, filósofo griego, se opuso a la concepción filosófica de Pitágoras, postulando que no existían estos puntos con extensión y que era posible seguir dividiendo el espacio y el tiempo indefinidamente, porque creía que el movimiento no existe, que era una ficción de la mente humana. Pero dejaremos las apasionantes controversias filosóficas para otra oportunidad.
El dilema de las redes sociales aborda el hecho de cómo el producto que las compañías “procesan” para lograr la obtención de fabulosas ganancias somos los mismos seres humanos.
Las consecuencias del calentamiento global antropogénico están ocurriendo con una rapidez mayor a la pronosticada por la comunidad científica.
Este explorador, pionero en su tipo, saltará de áreas iluminadas por el sol a cráteres en sombra para realizar análisis detallados.
Quizá la principal causa de la escasa participación de las mujeres en la ciencia sean los estereotipos de género que imperan en la sociedad y que dictan que las mujeres no cuentan con la capacidad o el derecho para hacer investigación.
La NASA informó que este año habrá cuatro espectáculos de luz y sombra al alinearse la Tierra, la Luna y el Sol.
“(La sesión) fue aplazada en aras de garantizar el estricto apego a las disposiciones normativas relativas al proceso de notificación”, se lee en el comunicado.
El comportamiento migratorio de los tiburones de Groenlandia aún es un misterio para la comunidad científica.
Ramón Picarte siempre pensó que la matemática debería ser un aporte para sacar a las personas de la pobreza; con esa idea organizó e impulsó diferentes sociedades cooperativas de artesanos y trabajadores de Santiago.
Los carros voladores eléctricos con capacidad para dos pasajeros están a punto de convertirse en realidad en Florida, Estados Unidos.
¿Por qué las plantas generan frutos? Porque como todos los seres vivos, buscan perpetuarse en el mundo. El fruto es una adaptación exitosa de las plantas para lograr esta finalidad.
El famoso Axioma de elección juega un poco con la intuición humana, ya que demuestra que todo conjunto puede ser bien ordenado, aunque no se muestra cuál es ese orden.
Los genes son los responsables de la conformación del genotipo
Las guerras biológicas permiten combatir a los enemigos sin confrontarse físicamente y han sido practicadas a lo largo de la historia. Los primeros usos de agentes biológicos se remontan a tres mil 500 años.
El concepto tiempo asocia a los tres componentes estructurales del universo: materia, movimiento y espacio.
(El retorno del gusano barrenador: responsabilidades y la batalla para erradicarlo)
Habrá apagón de 8 horas en Yucatán, anuncia CFE
Secretaría de Salud elimina programas para 2026
Caen presuntos feminicidas de una menor de dos años en Chimalhuacán
México está lejos de la meta de generar 1.5 millones de empleos
Rusia duda de la autenticidad del audio sobre amenaza de “bombardear Moscú”
Nvidia supera a Apple y Microsoft; cotiza en la bolsa con 4 billones de dólares
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador