Cargando, por favor espere...

El número es la esencia del mundo: Pitágoras
Para Pitágoras, el conocimiento no se agota con lo empírico, porque su esencia está en el segundo, se encuentra donde está el número, concebido como una relación abstracta (no de cálculo).
Cargando...

El resultado matemático más famoso de la historia es, sin duda, el llamado Teorema de Pitágoras, aunque existe evidencia de que las antiguas civilizaciones egipcia y babilónica lo conocían empíricamente, se le atribuye a Pitágoras, y a su escuela, por haberlo demostrado geométricamente. El gráfico es ilustrativo por el significado geométrico de este bello resultado matemático.

Pitágoras y su escuela crearon el método del álgebra geométrica, que establece identidades algebraicas escolares, usando figuras geométricas y que fueron capaces de resolver distintos tipos de ecuaciones cuadráticas.

El misterioso Pitágoras creía en el idealismo dualista, es decir, suponía la existencia de dos mundos: el primero constituido por los objetos y los hechos empíricos, y el segundo por objetos no empíricos (matemáticos).

Para Pitágoras, el conocimiento no se agota con lo empírico, porque su esencia está en el segundo, se encuentra donde está el número, concebido como una relación abstracta (no de cálculo). Para Pitágoras, el número representa la esencia del mundo en armonía y unidad. La concepción del idealismo dual fue profundizada después por Platón.

Para Pitágoras, comprender el mundo significaba concebir la armonía en términos de números; quien lo lograba, se volvía divino e inmortal. También fue el primero en hablar sobre la conexión de ambos mundos mediante modelos o isomorfismos que representan objetos del primer mundo con los del segundo. Nació la idea moderna de modelamiento matemático; sin embargo, a Pitágoras le interesaba más la pureza de los objetos matemáticos, pues era un matemático por excelencia.

Una de las discusiones filosóficas más controversiales de esa época era saber ¿qué es lo infinitamente pequeño? Para Pitágoras, el punto era lo más pequeño posible, el cual componía el espacio físico de las cosas, tenía una extensión –era medible– y, como todo segmento, era un número finito de puntos en hilera, y el espacio físico un conglomerado de puntos. Con esta idea, Pitágoras afirmaba: Si un segmento se divide en partes iguales, a cada parte lo llamó parte oblicua del segmento; hoy en día lo llamamos unidad de medida. Por ejemplo, si un segmento es dividido en 10 partes iguales, cada parte es llamado parte oblicua del segmento (hoy día, podría ser cada parte oblicua un centímetro o cualquier unidad de medida).

Para Pitágoras, siempre existe esta parte oblicua; o sea, siempre es posible medir un segmento en unidades de medida, y lo llamó conmensurables. Con esta misma concepción, para el caso de dos segmentos, Pitágoras suponía la existencia de una unidad mínima (parte oblicua) común, que midiera ambos segmentos. Dicha teoría estuvo basada en la unidad de todas las cosas que representan los números. Tal postura filosófica tuvo una ruptura cuando uno de sus discípulos, llamado Hipaso de Metaponte, descubrió que en un triángulo rectángulo isósceles no existía esta unidad común entre un cateto y la hipotenusa del triángulo. Este hecho enfureció a Pitágoras, de quien se cuenta que ordenó matar a Hipaso, quien se convirtió en el primer mártir de la matemática. El secretismo de la secta pitagórica ayudó a que esto no se divulgara, pero Hipaso ya lo había contradicho.

Los segmentos no medibles, llamados inconmensurables, fueron prohibidos por los pitagóricos y para algunos historiadores, esta primera crisis en la matemática trajo como consecuencia una ruptura de la concepción filosófica de Pitágoras, pero no de la matemática. Pasaron unos 200 años para que el matemático griego Eudoxio formulara un avance en la comprensión de los inconmensurables, llamados también irracionales. Esta comprensión no fue final, porque lo infinitamente pequeño permaneció como el horror de los griegos en las generaciones futuras de matemáticos, y solo hasta 1858 el enigma fue aclarado con la construcción formal de los números reales por el matemático Richard Dedekind (1831-1916).

Zenón de Elea, discípulo de Parménides, filósofo griego, se opuso a la concepción filosófica de Pitágoras, postulando que no existían estos puntos con extensión y que era posible seguir dividiendo el espacio y el tiempo indefinidamente, porque creía que el movimiento no existe, que era una ficción de la mente humana. Pero dejaremos las apasionantes controversias filosóficas para otra oportunidad.


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

Es considerado el más prolífico de los matemáticos; su nombre figura en fórmulas, teoremas, números, integrales y constantes en distintas ramas de la matemática.

Elon Musk, el multimillonario que fundó la empresa Neuralink, reportó como estable la salud del primer ser humano que recibió un implante de la empresa de chips cerebrales.

Las muertes por sobredosis de fentanilo alcanzaron otro récord en EE. UU. En sólo un año (2021-2022) casi 109 mil personas perdieron la vida por consumir esta sustancia.

Monitorear la evolución del rendimiento deportivo de los atletas a lo largo de las fases de preparación para una competencia es un tema que ha tomado relevancia en los últimos años, sin embargo, no todos los deportistas tienen las herramientas necesarias para realizarla con eficacia.

¿Cuál es el carácter distintivo de la dialéctica? Pongamos el caso de la guerra, ¿es nociva o es perjudicial? Desde el punto de vista de la dialéctica, es indispensable saber qué guerra se está planteando. Aquí la verdad siempre es concreta.

George Cantor sufrió una una profunda depresión por la muerte de su hijo, pero también por las ideas religiosas que tenía: Dios le revelaba todas las deducciones lógicas a las que llegó.

El caso chileno ilustra los riesgos ecológicos que trae consigo la producción de litio: en el Salar del Carmen se extrae diariamente cantidades gigantescas de agua la empresa SQM, la segunda mayor productora de litio en el mundo.

La obra aplica de “forma magistral” el método de análisis marxista-leninista, que permite al autor pronosticar los eventos que se desarrollaron en años posteriores, en los que los principales países imperialistas del mundo buscan mantener su hegemonía.

Toda la matemática clásica, desde la época de los griegos, se construyó evitando considerar un infinito actual, aunque de manera subliminal siempre se ha usado. Aquí te explico.

La 4T presume que sus políticas están encaminadas a alcanzar la soberanía alimentaria, sin embargo, se han eliminado los apoyos de comercialización y programas que aseguraban un ingreso para los campesinos.

En las ideas de Anaximandro no estaban presentes ideas esenciales de la ciencia moderna.

La reducción de la mariposa monarca en bosques mexicanos, las cuales ocuparon 2.10 hectáreas de terreno -en el primer trimestre del 2021-, respecto a las 2.83 hectáreas registradas en 2019.

Fueron 5,504 especies previamente desconocidas de virus las que se identificaron, entre ellas, al 'Taraviricota', que podría ser el eslabón perdido en la evolución de los virus ARN.

El pan y la sal comparten una historia íntimamente relacionada desde su descubrimiento y uso en la alimentación; la cultura los tiene como emblemas relevantes en la vida cotidiana de los pueblos más antiguos.

No es raro encontrar bosques enfermos: aquéllos con hojas amarillas o cafés, troncos llenos de grumos resinosos, follaje manchado y, en los casos más graves, la presencia masiva de plantas o insectos parásitos.

Edición impresa

Editorial

La salud mexicana al término del sexenio


Dinamarca es el punto de comparación que eligió AMLO desde el principio para prometer una atención médica de primer mundo para todos los mexicanos.

Síguenos en Facebook


Poesía

Sociedad anónima

Sociedad anónima 1134