Cargando, por favor espere...
El resultado matemático más famoso de la historia es, sin duda, el llamado Teorema de Pitágoras, aunque existe evidencia de que las antiguas civilizaciones egipcia y babilónica lo conocían empíricamente, se le atribuye a Pitágoras, y a su escuela, por haberlo demostrado geométricamente. El gráfico es ilustrativo por el significado geométrico de este bello resultado matemático.
Pitágoras y su escuela crearon el método del álgebra geométrica, que establece identidades algebraicas escolares, usando figuras geométricas y que fueron capaces de resolver distintos tipos de ecuaciones cuadráticas.
El misterioso Pitágoras creía en el idealismo dualista, es decir, suponía la existencia de dos mundos: el primero constituido por los objetos y los hechos empíricos, y el segundo por objetos no empíricos (matemáticos).
Para Pitágoras, el conocimiento no se agota con lo empírico, porque su esencia está en el segundo, se encuentra donde está el número, concebido como una relación abstracta (no de cálculo). Para Pitágoras, el número representa la esencia del mundo en armonía y unidad. La concepción del idealismo dual fue profundizada después por Platón.
Para Pitágoras, comprender el mundo significaba concebir la armonía en términos de números; quien lo lograba, se volvía divino e inmortal. También fue el primero en hablar sobre la conexión de ambos mundos mediante modelos o isomorfismos que representan objetos del primer mundo con los del segundo. Nació la idea moderna de modelamiento matemático; sin embargo, a Pitágoras le interesaba más la pureza de los objetos matemáticos, pues era un matemático por excelencia.
Una de las discusiones filosóficas más controversiales de esa época era saber ¿qué es lo infinitamente pequeño? Para Pitágoras, el punto era lo más pequeño posible, el cual componía el espacio físico de las cosas, tenía una extensión –era medible– y, como todo segmento, era un número finito de puntos en hilera, y el espacio físico un conglomerado de puntos. Con esta idea, Pitágoras afirmaba: Si un segmento se divide en partes iguales, a cada parte lo llamó parte oblicua del segmento; hoy en día lo llamamos unidad de medida. Por ejemplo, si un segmento es dividido en 10 partes iguales, cada parte es llamado parte oblicua del segmento (hoy día, podría ser cada parte oblicua un centímetro o cualquier unidad de medida).
Para Pitágoras, siempre existe esta parte oblicua; o sea, siempre es posible medir un segmento en unidades de medida, y lo llamó conmensurables. Con esta misma concepción, para el caso de dos segmentos, Pitágoras suponía la existencia de una unidad mínima (parte oblicua) común, que midiera ambos segmentos. Dicha teoría estuvo basada en la unidad de todas las cosas que representan los números. Tal postura filosófica tuvo una ruptura cuando uno de sus discípulos, llamado Hipaso de Metaponte, descubrió que en un triángulo rectángulo isósceles no existía esta unidad común entre un cateto y la hipotenusa del triángulo. Este hecho enfureció a Pitágoras, de quien se cuenta que ordenó matar a Hipaso, quien se convirtió en el primer mártir de la matemática. El secretismo de la secta pitagórica ayudó a que esto no se divulgara, pero Hipaso ya lo había contradicho.
Los segmentos no medibles, llamados inconmensurables, fueron prohibidos por los pitagóricos y para algunos historiadores, esta primera crisis en la matemática trajo como consecuencia una ruptura de la concepción filosófica de Pitágoras, pero no de la matemática. Pasaron unos 200 años para que el matemático griego Eudoxio formulara un avance en la comprensión de los inconmensurables, llamados también irracionales. Esta comprensión no fue final, porque lo infinitamente pequeño permaneció como el horror de los griegos en las generaciones futuras de matemáticos, y solo hasta 1858 el enigma fue aclarado con la construcción formal de los números reales por el matemático Richard Dedekind (1831-1916).
Zenón de Elea, discípulo de Parménides, filósofo griego, se opuso a la concepción filosófica de Pitágoras, postulando que no existían estos puntos con extensión y que era posible seguir dividiendo el espacio y el tiempo indefinidamente, porque creía que el movimiento no existe, que era una ficción de la mente humana. Pero dejaremos las apasionantes controversias filosóficas para otra oportunidad.
AMLO olvida que el desarrollo económico de un país está directamente relacionado con las inversiones en la investigación y la producción de ciencia y tecnología.
Con sus ataques a las instituciones educativas y culturales, López Obrador pretende eliminar el pensamiento crítico, una actitud retrógrada muy parecida a la que hace varios siglos desembocó en el asesinato de judíos en la primera mitad del Siglo XX.
El equipo de la misión señaló que continúa trabajando para mantener operativa a la nave Voyager 1
Además de generar beneficios importantes para los suelos, la materia orgánica contribuye al amortiguamiento de agentes contaminantes. Sin embargo, las actividades humanas han provocado que en el 42% de nuestro territorio los suelos estén casi inservibles.
En recientes días hemos escuchado sobre la “nueva amenaza” que acecha las zonas costeras del Golfo de México, la superbacteria “carnívora” Vibro vilmificus; la mayoría de sus víctimas mortales fueron pacientes con problemas hepáticos.
El Centro Nacional de Investigaciones Científicas (CNRS) francés sostuvo que en plena selva amazónica descubrió una “extensa red de ciudades de dos mil 500 años de antigüedad”.
Un estudio reveló que “quejarse” es uno de los hábitos que más puede generar daños en el cerebro, tanto para la resolución de problemas como para la memoria.salu
¿Es normal el adulterio en la naturaleza? Para respondernos analizaremos el comportamiento reproductivo de algunas especies. Tomando como ejemplo a mamíferos y aves, la monogamia existe, pero no es la regla en el mundo natural.
El ChatGPT funciona como un programa que responde preguntas, genera texto y sostiene charlas, simulando una conversación real entre personas. Es muy útil, sin embargo, también tiene algunas limitaciones.
Los humanos, a diferencia de los animales, son enseñados en familias, escuelas y grupos humanos insertos en sociedades cambiantes en términos estructurales e ideológicos.
Dotado de un extraordinario talento para estructurar conexiones, el alemán Alexander Grothendiek amplió las fronteras de la matemática contemporánea.
Mientras el trabajo matemático tiene reglas, axiomas, y su libertad está en función de estar gobernado por sistemas formales; en el trabajo filosófico...
La realidad es más compleja de lo que la ciencia sabe de ella y nos damos cuenta.
El concepto tiempo asocia a los tres componentes estructurales del universo: materia, movimiento y espacio.
Carl Jacobi desarrolló una intensa labor de investigación, su obra científica publicada por la Academia de Ciencias de Berlín asciende a ocho volúmenes.
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador