Cargando, por favor espere...
La editorial Esténtor publicó recientemente mi libro Análisis espectral de las ecuaciones íntegro-diferenciales que surgen en los problemas de la mecánica hereditaria y física térmica. Este libro es mi tesis doctoral traducida del ruso al español, que fue redactada durante mi estancia en la Facultad de Mecánica y Matemáticas de la Universidad Estatal Lomonósov de Moscú, Rusia. En el primero de los seis años que estuve en la tierra del gran revolucionario Lenin, cursé el ruso y los cinco restantes estudié la maestría y el doctorado en física y matemáticas, con el apoyo de Antorcha Campesina, a quien con mucho cariño dediqué la obra, que se divide en tres grandes capítulos. En el primero se expone la estructura general del espectro (soluciones de las ecuaciones); las asíntotas obtenidas de las partes reales y complejas del espectro de las funciones-operadores consideradas y la dependencia de la localización del espectro. En el segundo se determina la existencia y unicidad de las soluciones de dichas ecuaciones íntegro-diferenciales de segundo grado en el espacio de Sóbolev, con la ayuda de las condiciones iniciales de Cauchy. En el tercero y último capítulo, las soluciones son expresadas en forma de suma de series convergentes en el espacio de Hilbert. Dicha convergencia ayudó a determinar el decaimiento exponencial o polinomial de las soluciones de las ecuaciones íntegro-diferenciales consideradas, lo que propicia la generación de una cantidad considerable de aplicaciones en diferentes campos de la ciencia.
En efecto, las ecuaciones integro-diferenciales de segundo grado, es decir, las ecuaciones diferenciales parciales de segundo grado, con un término integral conocido como integral de Volterra, surgen en varias ramas de la mecánica y la física, tales como la teoría de la conducción del calor en los medios de memoria y teoría de la viscoelasticidad. Las ecuaciones de este tipo también surgen en la teoría cinética de los gases, en la teoría del impulso acústico, en la dinámica de los cuerpos sólidos viscoelásticos y en los problemas de controlabilidad de sistemas termoelásticos con memorias.
Para explicar el resultado obtenido en el libro, explicaré el título en primer lugar. Por análisis espectral me refiero al análisis del comportamiento asintótico de las soluciones infinitas de un polinomio característico, obtenido a partir de la ecuación íntegro-diferencial considerada. Estas soluciones, que pueden ser reales o complejas, reciben el nombre de espectro. Son llamadas así porque encuentran aplicaciones en diferentes fenómenos como la espectroscopia de rayos X, la resonancia magnética o el estudio fotográfico de los espectros estelares, etcétera.
El término “física térmica” causa curiosidad debido a que, en la división clásica de la física, no existe una rama como tal. En efecto, física térmica se refiere a la combinación de la termodinámica, la mecánica estadística y la teoría cinética de los gases; combinación en la que coinciden varios ingenieros de materiales y físicos reconocidos. Pero lo que más ha despertado interés es la palabra hereditaria y, sobre todo, el concepto mecánica hereditaria; pues en la ciencia de la mecánica y la física tampoco hay una rama que se llame así. El término se refiere, más bien, “a la aparición de fenómenos biológicos con intervención de la herencia, entendida no en el sentido biológico clásico, sino en el estudio de fenómenos en los que la evolución de un sistema no depende solamente de su estado actual, sino de toda su evolución pasada” (léase La correspondencia entre Vladímir A. Kostitzin y Vito Volterra (1933 – 1962) y los inicios de la biomatemática, pág. 168, segundo párrafo, de Giorgio Israel y Ana Millan Gasca).
El libro es producto de un esfuerzo colectivo y resultado de una investigación de cinco años, que encontrará utilidad, sin duda, en la sociedad actual, si llega a manos de los jóvenes y maestros que estudian ingeniería de materiales y otras ramas relacionadas con la física.
La Nochebuena era una flor predilecta para los aztecas, zapotecas, zoques, chontales y totonacas.
El ser humano ha entendido las diferentes formas de vida a través de la observación, distinguiendo las similitudes y diferencias de los organismos.
El aumento quizá se deba, dicen los científicos, al aumento de la temperatura de la superficie del mar en el mundo, que ha aumentado drásticamente en las últimas décadas como consecuencia de la quema de combustibles fósiles.
Saihanba, combinación de chino y mongol, es el nombre del bosque artificial más grande del mundo. Su objetivo, proteger a Beijing, azotada por tormentas de arena debido a la desertificación de sus alrededores.
Para la antigua cultura griega, los números naturales podían tener dos realizaciones, una como elemento de medición (lo llamaban magnitud) y otra como elemento de conteo.
Estableció formalmente la continuidad de la recta real, definiendo un número real por medio de un dispositivo llamado cortadura.
Con sus ataques a las instituciones educativas y culturales, López Obrador pretende eliminar el pensamiento crítico, una actitud retrógrada muy parecida a la que hace varios siglos desembocó en el asesinato de judíos en la primera mitad del Siglo XX.
Von Neumann fue considerado como superdotado, ya que desde los seis años ya sabía dividir, hablar griego antiguo, francés, alemán y latín, y a sus ocho años ya dominaba el cálculo diferencial e integral.
Julio Verne nació en Nantes, Francia, en 1828. Fue un brillante escritor y divulgador de la ciencia.
Son uno de los pocos grupos totalmente originarios que aún existen en el mundo entero; persisten alrededor de seis mil 200 individuos. En las últimas décadas han enfrentado distintos episodios de despojo de sus bosques.
Fueron 5,504 especies previamente desconocidas de virus las que se identificaron, entre ellas, al 'Taraviricota', que podría ser el eslabón perdido en la evolución de los virus ARN.
El acceso a las vacunas “es uno de los retos definitorios de la pandemia”, afirmó el máximo responsable de la agencia de salud de Naciones Unidas.
El desarrollo de la matemática en la actualidad es esencialmente influenciado por la escuela formalista, propuesta por uno de los últimos universalistas de la matemática, el alemán David Hilbert.
La comunicación no es la única ni es exclusiva de los seres humanos. Acá te contamos por qué.
El capitalismo es el sistema económico dominante en el mundo.
¡Otra vez! Sistema Cutzamala pierde millones de metros cúbicos de agua
Política fiscal, ¿estabilidad macroeconómica o desarrollo social?
Con plantón, Policías de Hidalgo exigen pago de aguinaldo
Madres en resistencia inician huelga de hambre en Chiapas
Ropa y textiles importados enfrentarán aranceles de hasta 35%
Activan Alerta Amarilla por frío en 6 alcaldías de CDMX
Escrito por Romeo Pérez
Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.