Cargando, por favor espere...

Arthur Cayley: de abogado a un prolífero matemático
El aporte matemático de Arthur Cayley es impresionante e innovador, sus ideas visionarias han contribuido a desarrollar la matemática moderna.
Cargando...

En la Inglaterra del siglo XIX era común que abogados y jueces ganaran los concursos de matemática, eran muy aficionados a la solución de complejos problemas. Uno de ellos fue el Inglés Arthur Cayley, nació el 6 de agosto de 1821 en Richmond, en el seno de una familia inglesa-rusa. Los Cayley eran una familia de comerciantes ortodoxos de la iglesia anglicana, que transitaban constantemente entre Inglaterra y San Petersburgo hasta que decidieron radicarse en Londres. Cuando Arthur tenía 8 años, mostró grandes cualidades calculistas, aventajando a todos sus compañeros de clase.

En 1835 ingresa al Trinity College de Cambridge, logrando un brillante desempeño. Siendo estudiante logró publicar trabajos de investigación en la Cambridge Mathematical Journal para luego ser nombrado Tutor ayudante por 3 años. Sus convicciones religiosas fueron un obstáculo para su renovación como tutor y tuvo que buscar nuevos horizontes, puesto que en la época ser abogado era sinónimo de prestigio social y económico, Arthur decide ingresar al colegio de Lincoln, donde se graduó de abogado en 1949 a los 28 años. Se dedica por 14 años a la abogacía, sin embargo, su afición por la matemática nunca lo dejó, así lo ameritan sus 250 trabajos publicados mientras ejercía como abogado.

Sus publicaciones matemáticas hacen que fuera nombrado profesor de matemática pura en Cambridge, dejando la abogacía; a pesar de su desmejora salarial, prefirió dedicarse de lleno a la investigación matemática.

El aporte matemático de Arthur Cayley es impresionante e innovador, sus ideas visionarias han contribuido a desarrollar la matemática moderna. Por aquella época los únicos objetos llamados Grupos en matemática eran las permutaciones de las raíces de una ecuación algebraica; fue Arthur Cayley quien propuso la actual definición de Grupo abstracto, con lo cual dejó un legado impresionante por la importancia que tiene esta estructura algebraica en la matemática y física contemporáneas. También establece que las matrices y los cuaterniones son Grupos.

Arthur Cayley fue el primero en pensar que las geometrías (euclidianas y no euclidianas), eran parte de un concepto más central, hoy día llamado Geometría Neutral, que permitió un concepto unificado de las geometrías en el famoso Programa Erlanger de Felix Klein (1849-1925). Su capacidad visionaria lo llevó a concebir por primera vez los espacios n-dimensionales Rn, logrando establecer una geometría en estos espacios, que resultó fundamental para estudiar el espacio–tiempo continuo en la Teoría de la Relatividad, además de otras aplicaciones de la física. Una de sus ideas más revolucionarias fue la concepción de invariante, desarrollando lo que hoy llamamos Teoría de Invariantes Algebraicos, que resultó fundamental para la formulación matemática de fenómenos físicos para materializar la idea de independencia de un sistema de coordenadas (físicamente necesaria).

Arthur Cayley tenía un carácter apacible, pero con mucha firmeza en sus decisiones, aficionado a leer novelas, escalar montañas, a pintar en acuarela, muy amante de la arquitectura. Su formación como abogado fue importante en su labor de gestión académica en la Universidad de Cambridge; se caracterizó, además, por apoyar a las mujeres en su inserción a la academia.

Arthur Cayley mantuvo una amistad muy íntima con el famoso matemático Janes Sylvester (1814–1897) –de él nos ocuparemos en el próximo artículo– con quien trabajó en distintas ideas matemáticas. Fue invitado por Sylvester en 1882 para dictar una serie de conferencias sobre funciones abelianas y funciones theta, en la Universidad Johns Hopkins, en EE.UU.  En 1883 es elegido Presidente de la Asociación Británica para el avance de las Ciencias. Su famosa frase: “en la teoría matemática, la belleza puede ser percibida, pero no explicada”, ha hecho reflexionar a filósofos y a educadores matemáticos.

En 1863, Cayley se casa con Susan Moline, con quien tuvo un hijo y una hija; constituyeron una familia feliz. Murió de una larga y dolorosa enfermedad el 26 de enero de 1895 en Cambridge, dejando una profunda huella en las futuras generaciones de matemáticos. Su trabajo matemático se encuentra publicado en el Collected Mathematical Paper, que contiene 13 volúmenes, cada volumen de unas 600 páginas, que constituyen 966 trabajos de investigación, una producción impresionante que cualquier matemático quisiera tener.


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

Sirvan estos dos ejemplos para que los estudiantes mexicanos despierten su interés por el desarrollo histórico de las fórmulas matemáticas.

La superación de la que habla Marx no niega por completo lo anteriormente construido por la tradición, sino que lo integra y, en algunos casos, lo supone. Aquí lo explico.

La Nochebuena era una flor predilecta para los aztecas, zapotecas, zoques, chontales y totonacas.

El satélite Jinan-1, de 23 kg, y su estación de 100 kg, son más pequeños y económicos que el Micius de 600 kg, usado en 2017.

Los métodos proporcionados por Eudoxo y Arquímedes, hace más de dos mil años, son usados hoy para calcular áreas con cualquier tipo de curvas y volúmenes.

La NASA informó que este año habrá cuatro espectáculos de luz y sombra al alinearse la Tierra, la Luna y el Sol.

La proteína es un macronutriente indispensable para el crecimiento y el mantenimiento de órganos y músculos en el cuerpo de los animales.

Hipatia era tan famosa que se convirtió en consejera de políticos, eclesiásticos y aristócratas; sin embargo, esta influencia social y política finalmente causó su trágica muerte.

Ota Benga fue un congoleño de 1.25 metros de alto que llegó en 1906 al zoológico de Nueva York. Fue vendido como esclavo y comprado por Samuel Verne, un antropólogo que viajaba para colectar “razas exóticas” para una feria en EE. UU.

En este Gobierno, los científicos se han sentido agredidos por el Conacyt, que ha denigrado su trabajo. Aun así advirtieron de los peligros y deficiencias de esta nueva Ley, pero al final no fueron escuchados.

Este miércoles, la Ciudad de México fue reconocida como la ciudad con más puntos conectados a internet en el mundo, superando incluso a Moscú, Rusia. En contraste, también ostenta el primer lugar en mayor desigualdad.

"Bard" tienen como propósito contribuir con la creatividad de los internautas, al tiempo en que les facilita la ejecución de diversas tareas.

Cada 14 de marzo se celebra el a la Matemática. Esta fecha fue elegida en virtud de que hace alusión a 3.14, que es el valor aproximado del enigmático número Pi (π).

Se trata de una fábrica de generación de datos, cuyo propósito es ofrecer estos datos a las empresas que desarrollan modelos de Inteligencia Artificial .

Hablar de la existencia de la realidad ha sido un problema filosófico muy discutido. En este contexto, qué tipo de realidad es un objeto matemático, es una pregunta que abordaremos en este artículo.