Cargando, por favor espere...

Arthur Cayley: de abogado a un prolífero matemático
El aporte matemático de Arthur Cayley es impresionante e innovador, sus ideas visionarias han contribuido a desarrollar la matemática moderna.
Cargando...

En la Inglaterra del siglo XIX era común que abogados y jueces ganaran los concursos de matemática, eran muy aficionados a la solución de complejos problemas. Uno de ellos fue el Inglés Arthur Cayley, nació el 6 de agosto de 1821 en Richmond, en el seno de una familia inglesa-rusa. Los Cayley eran una familia de comerciantes ortodoxos de la iglesia anglicana, que transitaban constantemente entre Inglaterra y San Petersburgo hasta que decidieron radicarse en Londres. Cuando Arthur tenía 8 años, mostró grandes cualidades calculistas, aventajando a todos sus compañeros de clase.

En 1835 ingresa al Trinity College de Cambridge, logrando un brillante desempeño. Siendo estudiante logró publicar trabajos de investigación en la Cambridge Mathematical Journal para luego ser nombrado Tutor ayudante por 3 años. Sus convicciones religiosas fueron un obstáculo para su renovación como tutor y tuvo que buscar nuevos horizontes, puesto que en la época ser abogado era sinónimo de prestigio social y económico, Arthur decide ingresar al colegio de Lincoln, donde se graduó de abogado en 1949 a los 28 años. Se dedica por 14 años a la abogacía, sin embargo, su afición por la matemática nunca lo dejó, así lo ameritan sus 250 trabajos publicados mientras ejercía como abogado.

Sus publicaciones matemáticas hacen que fuera nombrado profesor de matemática pura en Cambridge, dejando la abogacía; a pesar de su desmejora salarial, prefirió dedicarse de lleno a la investigación matemática.

El aporte matemático de Arthur Cayley es impresionante e innovador, sus ideas visionarias han contribuido a desarrollar la matemática moderna. Por aquella época los únicos objetos llamados Grupos en matemática eran las permutaciones de las raíces de una ecuación algebraica; fue Arthur Cayley quien propuso la actual definición de Grupo abstracto, con lo cual dejó un legado impresionante por la importancia que tiene esta estructura algebraica en la matemática y física contemporáneas. También establece que las matrices y los cuaterniones son Grupos.

Arthur Cayley fue el primero en pensar que las geometrías (euclidianas y no euclidianas), eran parte de un concepto más central, hoy día llamado Geometría Neutral, que permitió un concepto unificado de las geometrías en el famoso Programa Erlanger de Felix Klein (1849-1925). Su capacidad visionaria lo llevó a concebir por primera vez los espacios n-dimensionales Rn, logrando establecer una geometría en estos espacios, que resultó fundamental para estudiar el espacio–tiempo continuo en la Teoría de la Relatividad, además de otras aplicaciones de la física. Una de sus ideas más revolucionarias fue la concepción de invariante, desarrollando lo que hoy llamamos Teoría de Invariantes Algebraicos, que resultó fundamental para la formulación matemática de fenómenos físicos para materializar la idea de independencia de un sistema de coordenadas (físicamente necesaria).

Arthur Cayley tenía un carácter apacible, pero con mucha firmeza en sus decisiones, aficionado a leer novelas, escalar montañas, a pintar en acuarela, muy amante de la arquitectura. Su formación como abogado fue importante en su labor de gestión académica en la Universidad de Cambridge; se caracterizó, además, por apoyar a las mujeres en su inserción a la academia.

Arthur Cayley mantuvo una amistad muy íntima con el famoso matemático Janes Sylvester (1814–1897) –de él nos ocuparemos en el próximo artículo– con quien trabajó en distintas ideas matemáticas. Fue invitado por Sylvester en 1882 para dictar una serie de conferencias sobre funciones abelianas y funciones theta, en la Universidad Johns Hopkins, en EE.UU.  En 1883 es elegido Presidente de la Asociación Británica para el avance de las Ciencias. Su famosa frase: “en la teoría matemática, la belleza puede ser percibida, pero no explicada”, ha hecho reflexionar a filósofos y a educadores matemáticos.

En 1863, Cayley se casa con Susan Moline, con quien tuvo un hijo y una hija; constituyeron una familia feliz. Murió de una larga y dolorosa enfermedad el 26 de enero de 1895 en Cambridge, dejando una profunda huella en las futuras generaciones de matemáticos. Su trabajo matemático se encuentra publicado en el Collected Mathematical Paper, que contiene 13 volúmenes, cada volumen de unas 600 páginas, que constituyen 966 trabajos de investigación, una producción impresionante que cualquier matemático quisiera tener.


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

Por muy abstracto que se vuelva el razonamiento matemático procede de la realidad material y tarde o temprano vuelve a ella.

Toda la matemática clásica, desde la época de los griegos, se construyó evitando considerar un infinito actual, aunque de manera subliminal siempre se ha usado. Aquí te explico.

“La extinción de especies es uno de los grandes problemas ambientales y, junto con el cambio climático y un holocausto nuclear, podrían colapsar la civilización”, planteó el ecólogo mexicano Gerardo Ceballos.

Criticó al racionalismo al afirmar que la razón humana debe seguir las razones del corazón por medio de la gracia divina en la fe cristiana, convirtiéndose en un apologista del cristianismo, dando inicio a la corriente filosófica del existencialismo.

La influencia que han ejercido las ideas de Platón (Atenas, 429-347 a. C.) en la mente de los matemáticos perdura hasta nuestros días. Matemáticos contemporáneos como G. H. Hardy y Kurt Gödel son declarados platonistas.

Cada 14 de marzo se celebra el a la Matemática. Esta fecha fue elegida en virtud de que hace alusión a 3.14, que es el valor aproximado del enigmático número Pi (π).

Este fenómeno se encuentra en el movimiento de los mares, en los chorros que salen de un grifo con suficiente velocidad.

Que la energía cinética (antes llamada fuerza viva) representa el cambio del movimiento mecánico en otra forma de movimiento.

En la ruleta los resultados son equiprobables, no hay predilección por ningún número o color.

volviendo al ejemplo del futbol, las vacunas son el equivalente a jugar un partido amistoso a principio de temporada, solo nos preparan para los posibles escenarios de una “competencia real”.

Científicos de la Universitat Pompeu Fabra de Barcelona descubrieron cómo frenar la producción de acné, al alterar de manera exitosa el genoma del 'Cutibacterium acnes', una bacteria cutánea relacionada con la aparición de la afección cutánea.

Investigadores analizaron 5 mil 853 alimentos y los clasificaron por su carga de enfermedades nutricionales. Tales alimentos van desde los 74 minutos de vida perdidos hasta 80 minutos ganados por ración.

Sus ideas científicas fueron muy revolucionarias para su tiempo y no fueron comprendidas por sus contemporáneos

El uso de semillas mejoradas es una alternativa que garantiza la rentabilidad de las cosechas y la seguridad alimentaria, pero esa tecnología no es accesible para los 6.8 millones de personas que se dedican al sector agrícola.

Solo es necesario que una fracción del hielo antártico se derrita para causar estragos en el nivel geológico en nuestro planeta. Un incremento del nivel del mar que supere los dos metros de altura pondría en peligro a 770 millones de personas.