Cargando, por favor espere...
En la Inglaterra del siglo XIX era común que abogados y jueces ganaran los concursos de matemática, eran muy aficionados a la solución de complejos problemas. Uno de ellos fue el Inglés Arthur Cayley, nació el 6 de agosto de 1821 en Richmond, en el seno de una familia inglesa-rusa. Los Cayley eran una familia de comerciantes ortodoxos de la iglesia anglicana, que transitaban constantemente entre Inglaterra y San Petersburgo hasta que decidieron radicarse en Londres. Cuando Arthur tenía 8 años, mostró grandes cualidades calculistas, aventajando a todos sus compañeros de clase.
En 1835 ingresa al Trinity College de Cambridge, logrando un brillante desempeño. Siendo estudiante logró publicar trabajos de investigación en la Cambridge Mathematical Journal para luego ser nombrado Tutor ayudante por 3 años. Sus convicciones religiosas fueron un obstáculo para su renovación como tutor y tuvo que buscar nuevos horizontes, puesto que en la época ser abogado era sinónimo de prestigio social y económico, Arthur decide ingresar al colegio de Lincoln, donde se graduó de abogado en 1949 a los 28 años. Se dedica por 14 años a la abogacía, sin embargo, su afición por la matemática nunca lo dejó, así lo ameritan sus 250 trabajos publicados mientras ejercía como abogado.
Sus publicaciones matemáticas hacen que fuera nombrado profesor de matemática pura en Cambridge, dejando la abogacía; a pesar de su desmejora salarial, prefirió dedicarse de lleno a la investigación matemática.
El aporte matemático de Arthur Cayley es impresionante e innovador, sus ideas visionarias han contribuido a desarrollar la matemática moderna. Por aquella época los únicos objetos llamados Grupos en matemática eran las permutaciones de las raíces de una ecuación algebraica; fue Arthur Cayley quien propuso la actual definición de Grupo abstracto, con lo cual dejó un legado impresionante por la importancia que tiene esta estructura algebraica en la matemática y física contemporáneas. También establece que las matrices y los cuaterniones son Grupos.
Arthur Cayley fue el primero en pensar que las geometrías (euclidianas y no euclidianas), eran parte de un concepto más central, hoy día llamado Geometría Neutral, que permitió un concepto unificado de las geometrías en el famoso Programa Erlanger de Felix Klein (1849-1925). Su capacidad visionaria lo llevó a concebir por primera vez los espacios n-dimensionales Rn, logrando establecer una geometría en estos espacios, que resultó fundamental para estudiar el espacio–tiempo continuo en la Teoría de la Relatividad, además de otras aplicaciones de la física. Una de sus ideas más revolucionarias fue la concepción de invariante, desarrollando lo que hoy llamamos Teoría de Invariantes Algebraicos, que resultó fundamental para la formulación matemática de fenómenos físicos para materializar la idea de independencia de un sistema de coordenadas (físicamente necesaria).
Arthur Cayley tenía un carácter apacible, pero con mucha firmeza en sus decisiones, aficionado a leer novelas, escalar montañas, a pintar en acuarela, muy amante de la arquitectura. Su formación como abogado fue importante en su labor de gestión académica en la Universidad de Cambridge; se caracterizó, además, por apoyar a las mujeres en su inserción a la academia.
Arthur Cayley mantuvo una amistad muy íntima con el famoso matemático Janes Sylvester (1814–1897) –de él nos ocuparemos en el próximo artículo– con quien trabajó en distintas ideas matemáticas. Fue invitado por Sylvester en 1882 para dictar una serie de conferencias sobre funciones abelianas y funciones theta, en la Universidad Johns Hopkins, en EE.UU. En 1883 es elegido Presidente de la Asociación Británica para el avance de las Ciencias. Su famosa frase: “en la teoría matemática, la belleza puede ser percibida, pero no explicada”, ha hecho reflexionar a filósofos y a educadores matemáticos.
En 1863, Cayley se casa con Susan Moline, con quien tuvo un hijo y una hija; constituyeron una familia feliz. Murió de una larga y dolorosa enfermedad el 26 de enero de 1895 en Cambridge, dejando una profunda huella en las futuras generaciones de matemáticos. Su trabajo matemático se encuentra publicado en el Collected Mathematical Paper, que contiene 13 volúmenes, cada volumen de unas 600 páginas, que constituyen 966 trabajos de investigación, una producción impresionante que cualquier matemático quisiera tener.
Este filme aborda la vida de la científica marina Sophia (Berenice Bejo), quien se dedica a estudiar el comportamiento de la especie más depredadora de los océanos: el tiburón blanco.
Explicaron que la levitación magnética sucede cuando un objeto es suspendido en el aire.
El oportunista luce como un “matasanos”, un doctor de ocasión que, viendo al paciente lamentarse por el dolor que le aqueja en una pierna, decide cortársela. Solo tenía un golpe, pero nadie podrá decirle al doctor que no logró curar el dolor.
La participación de las mujeres en el desarrollo de las matemáticas ha sido escasa, comparada con la de los hombres
La bacteria P. luminiscens actuó sobre las heridas de los soldados como un como un antibiótico muy eficaz, lo que explica por qué las heridas fluorescentes sanaban más rápido que las heridas sin la bacteria fluorescente. Seguramente, esta bacteria salvó la vida de varios soldados, ¿cómo pasó?
Roscosmos y la Administración Nacional China del Espacio (CNSA) firmaron en su momento un programa conjunto de cooperación en el espacio para el lustro 2018-2022.
Actualmente, diferentes grupos de científicos alrededor del mundo trabajan en la búsqueda y el desarrollo de tratamientos para combatir el Covid-19; el reto es que éstos sean eficaces contra las variantes actuales y futuras.
Existe una gran variedad de patrones que "evocan sensaciones dinámicas conscientes de movimiento ilusorio, a pesar de ser estático", explicaron los especialistas en su más reciente estudio.
Un tema que ha inquietado al hombre desde hace mucho tiempo es el del cálculo de áreas de terrenos accidentados para el cultivo.
La datación de las rocas es milenaria, surgieron de eventos geológicos en la génesis del sistema solar. Las capas terrestres de los primeros elementos de polvo estelar que formaron los planetas hace cuatro mil 500 millones de años.
El sustento del conocimiento matemático se desarrolló en la antigua Grecia; uno de los filósofos que contribuyó a su desarrollo fue Aristóteles, quien planteó las leyes básicas del pensamiento humano a fin de obtener deducciones válidas.
Hoy más que nunca, es urgente y necesario rescatar la ciencia y practicarla, si no queremos regresar a la época del oscurantismo y el absolutismo.
Científicos descubrieron en estos días un exoplaneta en órbita a una de las dos estrellas pequeñas de un sistema binario ubicado a unos 100 años luz de la Tierra.
Las matemáticas están íntimamente ligadas a la sociedad y a la naturaleza. De hecho, las necesidades prácticas de una sociedad influyen en el desarrollo de la matemática, y entre más desarrollada esté la sociedad, más desarrollada estará esta ciencia.
Aquí te explico por qué es muy importante y necesario proporcionar apoyos económicos y de capacitación a los pequeños productores, ya que los pocos nutrientes afectan la rentabilidad del cultivo y, por ende, al campo mexicano.
Cumplen 28 horas los bloqueos en Ecatepec
¡Otra vez! Sistema Cutzamala pierde millones de metros cúbicos de agua
Con plantón, Policías de Hidalgo exigen pago de aguinaldo
Motín en penal de Villahermosa desata caos y moviliza fuerzas de seguridad
Ley Silla entrará en vigor hasta el 17 de junio del próximo año
Madres en resistencia inician huelga de hambre en Chiapas
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador