Cargando, por favor espere...

Tlaixaxiliztli
El espacio curvo de Riemann
Durante más de dos mil años el postulado de las paralelas, que formaba parte del cimiento de la geometría euclidiana, se mantuvo firme.


El espacio curvo de Riemann es de una dimensión mayor a tres, imperceptible a simple vista, pero su estudio nació a partir de la superficie curva de las dos dimensiones sobre la que caminamos diariamente. A partir de esta simple observación, los matemáticos Lobachevski y Riemann se preguntaron si el concepto de una superficie curva podría extenderse a una de dimensión mayor a tres, pero que también fuera curva. La respuesta fue afirmativa y así nacieron los espacios curvos de Lobachevski y de Riemann, aunque este último fue quien generalizó la idea a una hipersuperficie curva de n-1 dimensiones.

Durante más de dos mil años el postulado de las paralelas, que formaba parte del cimiento de la geometría euclidiana, se mantuvo firme ante los fuertes cuestionamientos de matemáticos reconocidos mundialmente. Pero fue hasta principios del Siglo XIX cuando dicho postulado comenzó a tambalearse, primero ante la crítica del matemático alemán Karl Gauss, quien a partir de 1792 comenzó a cuestionarlo con el método de reducción al absurdo. Éste lo llevó a encontrar geometrías diferentes a la de Euclides, pero sus pensamientos nunca fueron publicados. Fue el matemático ruso Nikolái Lobachevski quien en 1826, con el mismo método aplicado por Gauss 34 años atrás, demostró, en la Universidad Imperial de Kazán, la existencia de una nueva geometría: la  hiperbólica. Seis años después, en 1832, el matemático húngaro János Bolyai obtuvo un resultado similar al del geómetra ruso.

Sin embargo, la discusión sobre el postulado de las paralelas estaba incompleta y llegó el matemático alemán Bernhard Riemann para completarla en 1854. En un discurso pronunciado en la Universidad de Gotinga, frente a su asesor de tesis, Carl Gauss, difundió los fundamentos de una geometría generalizada que incluía no solo a la euclidiana, sino también a la geometría hiperbólica y la elíptica, esta última obtenida por él como un caso particular de su híper-espacio n-1 dimensional. Fue así como nació la geometría riemanniana, muy estudiada hoy en las facultades de ciencias.

Para comprender el espacio curvo de Riemann es importante que estudiemos, en primer lugar, el concepto de curvatura, definida como “la medida de cuánto una curva difiere de una recta”. Por ejemplo, en un plano euclidiano, la curvatura de una recta es cero; la curvatura de un círculo de radio R es la constante 1/R; en cambio, una curva como la carretera Chinantla-Tecomatlán, la curvatura en cada punto es diferente y va indicando cuán cerrada es la curva; pero cada curvatura puede aproximarse por una constante también. La respuesta está en el radio de la curvatura del círculo osculador (tangente) a la curva considerada.

Por lo tanto, el estudio del radio en la curvatura de una curva cualquiera comienza por encontrar el radio de la curvatura de un círculo como una relación entre la curvatura de un círculo de radio R dividido por el mismo radio. Ésta es una relación inversamente proporcional, ya que a menor radio del círculo, obtenemos mayor curvatura, es decir, la curvatura se asemeja a la forma que tienen las semillas de un pepino; mientras que a mayor radio del círculo, menor curvatura, es decir, la curvatura se asemeja a una recta. Otro ejemplo que ilustra esta descripción es fijándonos en dos circunferencias de radios distintos, una pequeña inscrita tangencialmente en la grande. Es claro que la circunferencia de radio pequeño tiene una curvatura más aguda, en comparación con la del radio mayor. De aquí se deduce que si el radio es muy grande, digamos tendiendo al infinito, entonces la curvatura es cero, mientras que si el radio es muy pequeño, la curvatura es muy aguda, es decir, está muy cerrada la circunferencia.

El círculo osculador, por otra parte, se refiere al círculo tangente escogido entre una infinidad de círculos tangentes a la curva considerada, el que más se ajusta a la curva, es decir, el que se parezca tanto como se quiera a la curva estudiada.

Por lo tanto, si entendemos los conceptos de radio de curvatura de una curva y de su círculo osculador, entenderemos la curvatura de una superficie y posteriormente la curvatura de un espacio.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

Residuos navideños

Después de un mes repleto de celebraciones en el que la población adorna sus casas, hace regalos, convive y festeja, podemos preguntarnos: ¿cuál es el costo ambiental de las fiestas navideñas y de fin de año?

phili.jpg

Aquí te explico por qué es muy importante y necesario proporcionar apoyos económicos y de capacitación a los pequeños productores, ya que los pocos nutrientes afectan la rentabilidad del cultivo y, por ende, al campo mexicano.

mar.jpg

Marx no fue un economista cualquiera, fue un verdadero científico dispuesto a sumergirse en los complejos andamiajes de las moléculas, las ecuaciones, el metabolismo de materia y energía para validar o rectificar sus teorías sobre economía.

ci.jpg

Este gran matemático e inventor, dedicó sus últimos años a la docencia en la Biblioteca de Alejandría, sus obras están escritas al estilo de notas de clase de distintos temas: mecánica, geometría, óptica.

escu.jpg

“En México no se está instrumentando una política real para salvar la vida y proteger a los mexicanos de los desastres naturales", afirmó el Doctor en Física, Romeo Pérez Ortiz.

sequia.jpg

“Aproximadamente el 70 por ciento de los cinco mil 200 millones de hectáreas de tierras secas que se utilizan en agricultura o ganadería está degradada y amenazada por la desertificación”.

El reino vegetal en La Biblia. Parte 2

En las siguientes líneas podrán leer sobre el olivo, una de las plantas más representativas que se mencionan en La Biblia. Su primera mención aparece durante el Génesis 8:11.

Desarrollo de IA avanza hacia la vigilancia total: estudio

El estudio sugiere que los avances científicos están diseñados para monitorear a personas, lo que podría beneficiar a la industria de la vigilancia.

Proyecto Saguaro, otro capítulo de una larga historia

Una empresa estadounidense pretende transportar gas natural licuado (GNL) a Asia, pero las políticas ecológicas estadounidenses le imponen varias restricciones.

vacuna.jpg

volviendo al ejemplo del futbol, las vacunas son el equivalente a jugar un partido amistoso a principio de temporada, solo nos preparan para los posibles escenarios de una “competencia real”.

Conagua.jpg

Estos datos se obtienen de las observaciones que realiza la Conagua en las estaciones climatológicas.

Historias científicas en las tradiciones navideñas

En celebraciones como el maratón Guadalupe-Reyes, podemos encontrar diferentes elementos con historias científicas interesantes. Empecemos hablando de la nochebuena y el muérdago, dos plantas asociadas con la Navidad.

El club de los matemáticos

El club de los matemáticos está constituido por un conjunto de seres humanos con alta formación matemática y capaces de inventar nuevos teoremas.

tlai.jpg

Si te gustan las matemáticas y te interesa conocer qué características debe tener un sistema de axiomas, aquí te detallo. Son tres: compatibilidad, independencia y completitud (idealmente).

Filosofía, realidad y apariencia

La filosofía no es un adorno, merece que se le reconozca su capacidad de estudio de la realidad, su utilidad en el más amplio sentido de la palabra, pues la humanidad la necesita para manifestarse como tal. Olvidar a la filosofía es condenarnos a las sombras...