Cargando, por favor espere...

Razón áurea y su implicación
Hoy sabemos que forma parte de los números irracionales y que es un número algebraico, al ser solución de una ecuación algebraica.
Cargando...

De acuerdo con la investigación efectuada por el matemático ruso Georg Cantor, los números irracionales son los más abundantes en la naturaleza matemática, por encima de los naturales, enteros y racionales. En la lista infinita de números irracionales se encuentra la razón áurea, una constante irracional que se obtiene a partir de la división proporcional de un segmento de la siguiente manera: suponga que tiene usted un segmento de longitud x. Divida este segmento en dos partes no iguales, en a y b donde, por ejemplo, a puede ser la mayor y b la menor. Si la proporción de la longitud a con relación a la longitud b es la misma que la existente entre x=a+b y a, entonces la línea x ha sido cortada en media y extrema razón; es decir, a/b=(a+b)/a=1+b/a. Ahora, haciendo s =a/b y, ejercitando un poco el cerebro con una operación aritmética, se tiene que s2-s-1=0. Al resolver esta ecuación cuadrática llegamos al siguiente resultado: . La solución positiva recibe el nombre de razón áurea, una razón que se obtiene también a partir de la sucesión de Fibonacci (1, 1, 2, 3, 5, 8, 13, 21, etc.) dividiendo cada número por su anterior.

Para estudiar el origen e historia de este número áureo, se recomienda el libro La proporción áurea, la historia del Phi, el número más sorprendente del mundo, escrito por el director de la División de Ciencias de Hubble Space Telescope Science Institute. El autor comienza la historia de la razón áurea, buscando patrones matemáticos usados en la construcción de las tumbas para los faraones egipcios y sumerios. Posteriormente, orienta su investigación hacia la arquitectura de las pirámides construidas por los ingenieros antiguos, hasta encontrar pruebas escritas en el tratado Los elementos, de Euclides, quien realizó un estudio formal del número áureo.

Euclides de Alejandría escribió en la definición tres del Libro VI : “una recta ha sido cortada en extrema y media razón, cuando la recta entera es al segmento mayor, como el segmento mayor es al segmento menor”. Esta afirmación es la misma que acabo yo de escribir más arriba. El mismo genio de Alejandría demostró, además, que la razón a/b no podía escribirse como razón de dos números enteros, es decir, no podía ser un número racional.     

Rápidamente, aquel número “divino” encontró utilidad en las actividades prácticas de los pintores, matemáticos y músicos. Por ejemplo, el pintor Alberto Durero usó esta razón para construir su espiral, conocido actualmente como espiral de Durero, que sirve para profundizar la investigación sobre las conchas, hileras de piñones en la piña, semillas de una flor de girasol, etc. El astrónomo Kepler, por su parte, usó la proporción áurea para desarrollar un modelo platónico del sistema solar. Se sabe que, con esa razón, el astrónomo alemán construyó su famoso triángulo conocido como triángulo de Kepler: “la relación entre los catetos y la hipotenusa es igual a la proporción áurea”. El compositor francés Achille-Claude Debussy usó esa razón para componer los 55 compases de la introducción del Tercer Movimiento de La Mer, Dialogue du vent et la mer (El mar, el diálogo del viento y el mar), entre otros compases compuestos por él.

Por la unicidad, inconmesurabilidad, etc., del número irracional Phi, el matemático italiano Luca Pacioli lo bautizó como “sección divina”. Este matemático y teólogo italiano planteó, en 1509, en su obra De Divina Proportione, que dicha proporción tenía carácter de divino porque cumplía fundamentalmente las siguientes razones: unicidad (unicidad de Dios), trinidad (por estar definida de tres segmentos a, b y a+b); inconmensurabilidad (por la inconmensurabilidad de Dios) y la autosimilaridad (por la omnipresencia e invariabilidad de Dios). Desde entonces, esta razón es conocida como sección o proporción divina o áurea.

La sección áurea, como usted, lector, acaba de notar, es un patrón abstraído de la naturaleza mediante la observación y el análisis del hombre hace cientos de años. Hoy sabemos que forma parte de los números irracionales y que es un número algebraico, al ser solución de una ecuación algebraica. Ya formalizada, encuentra aplicaciones en diferentes actividades del hombre como la pintura, música, arquitectura, etc., lo cual demuestra que el desarrollo del conocimiento es en espiral. 


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Noticia anterior
CÉSAR BRAÑAS
Noticia siguiente
El irlandés

Notas relacionadas

Ahora se sabe que la homosexualidad está presente en todo el mundo natural, desde los seres vivos más sencillos hasta los más complejos. Protozoarios, algas, plantas, animales invertebrados y vertebrados poseen comportamientos homosexuales.

¿Qué pueden esperar las masas de los partidarios de un sistema que las excluye de la propia historia?

“Es por demás evidente que la acusación que se ha lanzado desde la FGR es absurda e impropia de un país gobernado bajo principios mínimos de Estado de derecho".

La geometría no es una forma de la intuición a priori, como afirmaba Kant, sino una construcción lógica. Estos argumentos fueron la base de la famosa escuela llamada "positivismo lógico".

“Caffarelli tiene una intuición fantástica, es sencillamente notable… me costó mucho seguirle el ritmo. De algún modo, ve inmediatamente cosas que los otros no ven”, afirmó el afamado matemático Louis Nirenberg.

Otra de las ventajas del cultivo in vitro es que le permite al hombre controlar la humedad, la temperatura y la luz, factores decisivos para el crecimiento de una planta, que, de manera natural, no pueden ser controlados.

Así, que el espacio en el que viajamos los humanos y las estrellas es curvo y no plano, como se había considerado en los dos mil años precedentes.

El desarrollo de la matemática en la actualidad es esencialmente influenciado por la escuela formalista, propuesta por uno de los últimos universalistas de la matemática, el alemán David Hilbert.

La 4T presume que sus políticas están encaminadas a alcanzar la soberanía alimentaria, sin embargo, se han eliminado los apoyos de comercialización y programas que aseguraban un ingreso para los campesinos.

En México hay aproximadamente dos mil especies de abejas nativas. A diferencia de las melíferas, que viven en colonias (colmenas) con su reina y obreras, la mayoría de las nativas son solitarias.

Ante el descenso de temperaturas, los seres humanos se las han ingeniado para no pasar frío y continuar con sus actividades normales, pero qué pasa con los animales, ¿cómo sobreviven a las temperaturas bajas extremas? Te cuento.

Si la incidencia de plagas y enfermedades no acaba con los bosques, sí reduce significativamente su actividad fotosintética. En los tiempos que corren esto contribuye al calentamiento global.

Después de un mes repleto de celebraciones en el que la población adorna sus casas, hace regalos, convive y festeja, podemos preguntarnos: ¿cuál es el costo ambiental de las fiestas navideñas y de fin de año?

El país no conseguirá la salud ecológica y humana con las buenas intenciones de la Semarnat, porque se necesita voluntad política, mayor presupuesto.

El pasado tres de febrero, otro golpe brutal a la naturaleza tuvo lugar en Ohio, cuando un tren con sustancias peligrosas se descarriló y liberó gases venenosos; 14 de sus 150 vagones contenían 100 mil litros de cloruro de vinilo.