Cargando, por favor espere...

Richard Dedekind: el precursor del enfoque estructuralista de la matemática
Estableció formalmente la continuidad de la recta real, definiendo un número real por medio de un dispositivo llamado cortadura.
Cargando...

A mediados del Siglo XIX, la matemática experimentó una evolución epistemológica que ha llegado hasta nuestros días. La concepción de las estructuras algebraicas y los nacimientos de las geometrías no euclidianas introdujo mecanismos de creación matemática nunca antes vistos, privilegiando los métodos generales y abstractos a los operatorios particulares, como era característico de la matemática de la época. Se retomó la discusión filosófica de la naturaleza de los objetos matemáticos y la epistemología del trabajo matemático. Uno de los matemáticos que contribuyó en este nuevo paradigma fue el alemán Richard Dedekind, nacido en Brunswink el seis de octubre de 1831, en el seno de una familia de clase media; su padre fue abogado y profesor de leyes. En 1850 ingresó a la Universidad de Gotinga, donde tuvo como maestro a Carl Gauss, quien marcó su vocación matemática. En 1852 se doctoró bajo la tutela de Gauss, con la tesis Integrales eulerianas, en 1854 obtuvo su habilitación como profesor universitario, y comenzó a enseñar en Gotinga, dictando cursos de Probabilidades y Geometría.

El maestro que más influyó en Richard Dedekind fue Peter Dirichlet; ambos entablaron una amistad cercana, personal y académica y fue quien lo introdujo a la teoría analítica de números. En 1856, Dedekind se dedicó a la teoría de Galois; desarrolló la teoría de cuerpo de los números racionales; introdujo el concepto de números enteros algebraicos como las raíces de una ecuación polinómica con coeficientes enteros, buscando métodos y definiciones generales, como es la característica de la matemática en la actualidad. En 1858 se hizo cargo de una cátedra en la Escuela Politécnica de Zurich. En 1872, Richard Dedekind publicó uno de los resultados más trascendentes para la fundamentación filosófica de la matemática. Estableció formalmente la continuidad de la recta real, definiendo un número real por medio de un dispositivo llamado cortadura, en términos intuitivos diríamos que, dado, definimos una cortadura de Dedekind como y un número real como el supremo de . Con este hallazgo matemático se puso fin a uno de los vacíos que se venían arrastrando desde la época de Pitágoras. Hasta antes de Richard Dedekind, los matemáticos solo concebían a los números irracionales de forma geométrica e intuitiva (incluso algunos matemáticos no lo consideraban un número).

Su aporte es trascendental en la fundamentación del análisis matemático. Otra de las invenciones relevantes de Richard Dedekind fue su publicación, como suplemento, de las obras de su maestro Peter Dirichlet, en donde se formuló por primera vez el concepto de ideal, el de anillo de números enteros. Además, se generalizó el teorema fundamental de la aritmética (todo número entero se puede descomponer en productos de números primos) como: Todo ideal de un campo de enteros algebraicos se descompone en forma única en intersección de ideales primos. Con él nacieron los fundamentos del álgebra abstracta, que se estudian hasta el día de hoy en los cursos de licenciatura en matemática. Es importante destacar que el concepto de Ideal fue tomado y extendido por David Hilbert y luego por Emmy Noether. El término anillo se le debe a Hilbert.

Richard Dedekind escribió, en 1888, uno de los artículos más influyentes desde el punto de vista matemático y filosófico, titulado ¿Qué son y para qué sirven los números?, con el que se consagró como el precursor del enfoque estructuralista de la matemática actual.

Una de las características personales de Richard Dedekind fue su modestia con sus ideas y sus cualidades pedagógicas de enseñar con claridad ideas abstractas; su pensamiento filosófico fue muy influyente, recibió una serie de reconocimientos, en 1862 fue elegido miembro de la Academia de Gotinga; en 1880 lo nombraron miembro de la Academia de Ciencias de Berlín; en 1890 se convirtió en miembro de la Academia de Ciencias de París. Recibió doctorados honoríficos por las Universidades, Christiania (Oslo), de Zurich y Brunswink.

Richard Dedekind nunca se casó; terminó su vida, acompañado de sus hermanas, murió el 12 de febrero de 1916 a los 85 años, dejando una profunda huella en nuestra formación matemática; fue un visionario que logró ver cómo sus ideas fueron valiosas para la fundamentación de la teoría de conjuntos, que impregna la matemática contemporánea.


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

La potencia del telescopio Hubble logró captar imágenes de la galaxia conocida como UGC 8091 que, según la NASA y la ESA, es parecida a una “bola de nieve” cósmica.

“Es por demás evidente que la acusación que se ha lanzado desde la FGR es absurda e impropia de un país gobernado bajo principios mínimos de Estado de derecho".

“Con esta investigación buscan una solución a la adulteración, que con el paso del tiempo se ha vuelto más sostificada, por lo que los procedimientos analíticos también de ser cada vez mejores”.

Creer que las verdades matemáticas y objetos matemáticos tienen existencia independiente de la mente humana no tiene fundamento; desde Pitágoras hasta algunos matemáticos más contemporáneos creen en esta independencia.

El desarrollo de la investigación matemática ha sido tan espectacular, que abarcar todo el conocimiento actual de la matemática se ha vuelto imposible para cualquier ser humano.

“El paciente podrá hacer llamadas telefónicas, manejar una computadora o comunicarse sin la necesidad de mover sus propios músculos, que actualmente están comprometidos", afirmó el multimillonario Elon Musk.

Investigadores del Instituto de Ingeniería (II) de la UNAM atribuyen la generación de microsismos en la CDMX a la falla sísmica denominada Plateros-Mixcoac localizada en la alcaldía Álvaro Obregón.

El sustento del conocimiento matemático se desarrolló en la antigua Grecia; uno de los filósofos que contribuyó a su desarrollo fue Aristóteles, quien planteó las leyes básicas del pensamiento humano a fin de obtener deducciones válidas.

El matemático sintió mucha inclinación por las humanidades y los idiomas, aprendió latín, griego, alemán, italiano y francés. Además, estudió por su cuenta y nunca obtuvo un título académico, aún así, fue reconocido a lo largo de su vida.

La idea de aprender sin esfuerzo hace que el conocimiento adquirido en los menores sea volátil, superficial, en desmedro de su capacidad intelectual; y preocupa que cada año el nivel académico e intelectual de niños y jóvenes está decayendo a sitios alarmantes.

Von Neumann fue considerado como superdotado, ya que desde los seis años ya sabía dividir, hablar griego antiguo, francés, alemán y latín, y a sus ocho años ya dominaba el cálculo diferencial e integral.

Serán las masas populares quienes realicen el cambio para que disfruten su trabajo creador

Los nuevos ambientes activan en nuestro organismo la producción de dopamina, sustancia que promueve el aprendizaje asociativo.

Si te has identificado con las personas que aman el terror, te contaré una historia de hechos reales que te pondrá los pelos de punta. Ésta es una historia sobre seres vivos que vuelven zombis a sus víctimas.

Aunque la predicción del reconocido científico menciona específicamente a los Estados Unidos, los temas que reflexiona tienen alcance global.