Cargando, por favor espere...
A mediados del Siglo XIX, la matemática experimentó una evolución epistemológica que ha llegado hasta nuestros días. La concepción de las estructuras algebraicas y los nacimientos de las geometrías no euclidianas introdujo mecanismos de creación matemática nunca antes vistos, privilegiando los métodos generales y abstractos a los operatorios particulares, como era característico de la matemática de la época. Se retomó la discusión filosófica de la naturaleza de los objetos matemáticos y la epistemología del trabajo matemático. Uno de los matemáticos que contribuyó en este nuevo paradigma fue el alemán Richard Dedekind, nacido en Brunswink el seis de octubre de 1831, en el seno de una familia de clase media; su padre fue abogado y profesor de leyes. En 1850 ingresó a la Universidad de Gotinga, donde tuvo como maestro a Carl Gauss, quien marcó su vocación matemática. En 1852 se doctoró bajo la tutela de Gauss, con la tesis Integrales eulerianas, en 1854 obtuvo su habilitación como profesor universitario, y comenzó a enseñar en Gotinga, dictando cursos de Probabilidades y Geometría.
El maestro que más influyó en Richard Dedekind fue Peter Dirichlet; ambos entablaron una amistad cercana, personal y académica y fue quien lo introdujo a la teoría analítica de números. En 1856, Dedekind se dedicó a la teoría de Galois; desarrolló la teoría de cuerpo de los números racionales; introdujo el concepto de números enteros algebraicos como las raíces de una ecuación polinómica con coeficientes enteros, buscando métodos y definiciones generales, como es la característica de la matemática en la actualidad. En 1858 se hizo cargo de una cátedra en la Escuela Politécnica de Zurich. En 1872, Richard Dedekind publicó uno de los resultados más trascendentes para la fundamentación filosófica de la matemática. Estableció formalmente la continuidad de la recta real, definiendo un número real por medio de un dispositivo llamado cortadura, en términos intuitivos diríamos que, dado, definimos una cortadura de Dedekind como y un número real como el supremo de . Con este hallazgo matemático se puso fin a uno de los vacíos que se venían arrastrando desde la época de Pitágoras. Hasta antes de Richard Dedekind, los matemáticos solo concebían a los números irracionales de forma geométrica e intuitiva (incluso algunos matemáticos no lo consideraban un número).
Su aporte es trascendental en la fundamentación del análisis matemático. Otra de las invenciones relevantes de Richard Dedekind fue su publicación, como suplemento, de las obras de su maestro Peter Dirichlet, en donde se formuló por primera vez el concepto de ideal, el de anillo de números enteros. Además, se generalizó el teorema fundamental de la aritmética (todo número entero se puede descomponer en productos de números primos) como: Todo ideal de un campo de enteros algebraicos se descompone en forma única en intersección de ideales primos. Con él nacieron los fundamentos del álgebra abstracta, que se estudian hasta el día de hoy en los cursos de licenciatura en matemática. Es importante destacar que el concepto de Ideal fue tomado y extendido por David Hilbert y luego por Emmy Noether. El término anillo se le debe a Hilbert.
Richard Dedekind escribió, en 1888, uno de los artículos más influyentes desde el punto de vista matemático y filosófico, titulado ¿Qué son y para qué sirven los números?, con el que se consagró como el precursor del enfoque estructuralista de la matemática actual.
Una de las características personales de Richard Dedekind fue su modestia con sus ideas y sus cualidades pedagógicas de enseñar con claridad ideas abstractas; su pensamiento filosófico fue muy influyente, recibió una serie de reconocimientos, en 1862 fue elegido miembro de la Academia de Gotinga; en 1880 lo nombraron miembro de la Academia de Ciencias de Berlín; en 1890 se convirtió en miembro de la Academia de Ciencias de París. Recibió doctorados honoríficos por las Universidades, Christiania (Oslo), de Zurich y Brunswink.
Richard Dedekind nunca se casó; terminó su vida, acompañado de sus hermanas, murió el 12 de febrero de 1916 a los 85 años, dejando una profunda huella en nuestra formación matemática; fue un visionario que logró ver cómo sus ideas fueron valiosas para la fundamentación de la teoría de conjuntos, que impregna la matemática contemporánea.
Gracias al estudio y observación del mundo, sabemos con precisión que la naturaleza está llena de comportamientos homosexuales, desde los organismos más pequeños hasta los grandes mamíferos.
"Bard" tienen como propósito contribuir con la creatividad de los internautas, al tiempo en que les facilita la ejecución de diversas tareas.
La bacteria P. luminiscens actuó sobre las heridas de los soldados como un como un antibiótico muy eficaz, lo que explica por qué las heridas fluorescentes sanaban más rápido que las heridas sin la bacteria fluorescente. Seguramente, esta bacteria salvó la vida de varios soldados, ¿cómo pasó?
La educación universitaria es un paso indispensable para el desarrollo científico y tecnológico.
Este fenómeno se denomina tormenta geomagnética y sus efectos se manifiestan a manera de interrupciones en las comunicaciones por radio y satélite, además de cortes de energía en los casos más extremos.
Tiene como objetivo ampliar la compresión del universo y contará con uno de los espejos más avanzados jamás creados.
Otra de las ventajas del cultivo in vitro es que le permite al hombre controlar la humedad, la temperatura y la luz, factores decisivos para el crecimiento de una planta, que, de manera natural, no pueden ser controlados.
Es considerado el más prolífico de los matemáticos; su nombre figura en fórmulas, teoremas, números, integrales y constantes en distintas ramas de la matemática.
Las levaduras pertenecen a un tipo de hongos muy pequeños que únicamente podemos observar con ayuda de un microscopio.
El esfuerzo debe concentrarse en una capacitación intensa a los profesores, para que ellos a su vez repliquen esta enseñanza en sus alumnos, de modo que en el futuro muchos estudiantes pertenecientes a la clase pobre dispongan de las herramientas adecua
Entre marxistas es frecuente afirmar que lo más importante de Marx no fue lo que dijo, sino su método de conocimiento. Esto es así porque, así como el universo es infinito, también lo es su conocimiento.
El androcentrismo es la palabra empleada para hacer referencia a la masculinización de lo cotidiano en las prácticas sociales, culturales y en el ámbito científico.
En 2019, las berries fueron el tercer producto agroalimentario más exportado por nuestro país después de la cerveza y el aguacate.
El mundo generó más electricidad a partir de combustibles fósiles en 2020 que en 2015, año en que 190 países firmaron el Acuerdo de París y se comprometieron a reducir la emisión de gases de efecto invernadero.
Para una circunferencia no es difícil notar que la forma de la figura siempre surge y resurge siendo la misma
¿Qué pasó? UNAM sale del Top 100 en ranking de Reino Unido
“Garganta de cuchilla” la nueva variante de Covid-19
Se coló como juez mixto en Veracruz presunto abusador sexual
México, el país más peligroso del mundo para funcionarios públicos: ACLED
Pobladores mantienen bloqueo en la carretera Coatzacoalcos-Villahermosa
LitioMX, la empresa que creó AMLO, lleva tres años sin resultados ni proyectos
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador