Cargando, por favor espere...
Las profundas áreas de la matemática actual son consecuencia de la evolución conceptual de objetos cada vez más abstractos e interconectados entre sí mediante sistemas formales. La génesis de algunas áreas viene del planteamiento de problemas concretos, como en el caso del Análisis Funcional, área de activa investigación contemporánea. Uno de los personales que contribuyó en ese sentido fue el alemán Peter Dirichlet, quien nació el 13 de febrero de 1805 en Duren (Alemania); su formación transitó entre Alemania y Francia. Desde muy joven le apasionaba comprar libros y leerlos con pasión, estudió en el Colegio Jesuita de Colonia, en donde conoció al famoso físico y matemático George Ohnn (1789-1854), quién fue fundamental en su vocación de matemático. Habiendo terminado sus estudios secundarios, se fue a París para proseguir estudios, en donde conoció a grandes maestros de la escuela francesa: J. Fourier, S. Laplace, A. Legendre.
Peter Dirichlet decidió estudiar y profundizar la obra maestra de Carl Gauss: Disquisitions Aritmetical, en donde obtuvo relevantes resultados. Sin embargo, el problema que resolvió y lo llevó a la fama fue la solución del último Teorema de Fermat para n=5, causando admiración entre sus maestros, en especial en A. Legendre, quien colaboró en la solución. Su actividad académica empezó en 1827 en la Universidad de Breslau, y entre 1828 y 1855 en la Universidad de Berlín, como profesor asociado. En 1831 fue nombrado miembro de la Académia de Ciencias de Berlín. A la muerte de Carl Gauss, en 1855, Peter Dirichlet, lo sucedió en la Universidad de Gottinga, en donde conoció a Richard Dedekind y a su alumno Bernard Riemann. Sus clases eran de gran maestría, por su claridad expositiva; era ante todo un formador y entre sus discípulos figuran Ferbinand Eisenstein, Leopold Kronecker y Rudolf Lipschitz. Se casó con Rebeca Mendelssohn, hija del filósofo Moses Mendelssohn, defensor de los derechos civiles de los judíos.
Peter Dirichlet fue el primero en usar las funciones de variable compleja en la solución de problemas aritméticos, iniciando una fructífera área de investigación llamada: Teoría Analítica de Números. Tuvo una gran amistad con Joseph Fourier, que lo impulsó a estudiar profundamente las series trigonométricas, aportando criterios de convergencia y divergencia, para lo que estableció una nueva concepción de función (pedagógicamente usada en la actualidad). En Teoría de números estableció que la sucesión aritmética {a + nb / n en N}, donde a y b son primos entre sí, contiene un número infinito de números primos. Además demostró que la sucesión de sus recíprocos es divergente.
Peter Dirichlet también trabajó en la Teoría del Potencial de Newton, en donde estableció un principio que resultó clave para el desarrollo de una de las áreas más abstractas de la matemática pura y aplicada llamada Análisis Funcional. Bajo su concepción de función (para todo x en un intervalo, existe una única y), afirma que toda solución de una ecuación diferencial parcial, con condiciones en la frontera, debe minimizar una integral de energía. Dirichlet propuso una solución por métodos varicionales, hoy día se conoce como Principio de Dirichlet. Sin embargo, Karl Weierstrass encontró un contraejemplo demostrando su falsedad. Esta debilidad técnica fue superada por el famoso matemático David Hilbert, quien establece condiciones de suavidad en el contorno y concibe agrupar ciertas soluciones (funciones); fue la primera vez en que se habló de los famosos espacios funcionales y se empleó una poderosa herramienta teórica para la naciente mecánica cuántica, actualmente llamada Análisis Funcional.
Peter Dirichlet murió el 5 de mayo de 1859 en Gottinga (a meses de la muerte de su esposa). Se dice que su cerebro se conserva en el Departamento de Fisiología de la Universidad de Gottinga. Póstumamente, su amigo y colega Richard Dedekind publicó las clases de Peter Dirichlet bajo el título Lecciones sobre Teoría de Números, en donde también se encuentran los resultados más relevantes de este matemático, que dejara una profunda huella para la posteridad.
La intención es lograr un lente de material blando que logre un acercamiento, en un primer prototipo, de 32 por ciento con respecto a la visualización normal.
Aunque amado por unos y odiado por otros, el huitlacoche tiene un papel relevante en la economía, gastronomía y en la ciencia.
El alunizaje ocurrió en la cara noroeste a las 3:34 horas de la costa este de Estados Unidos, cerca de Mons Latreille, en el Mare Crisium.
La relación entre la ciencia y el dinero, entre la técnica y el negocio, ha sido ampliamente discutida por los grandes pensadores de la humanidad.
La comunicación no es la única ni es exclusiva de los seres humanos. Acá te contamos por qué.
Trece mujeres de la Universidad de Harvard marcaron un punto de inflexión en la historia en una época donde las mujeres generalmente eran excluidas de participar en el ámbito científico.
Sus ideas científicas fueron muy revolucionarias para su tiempo y no fueron comprendidas por sus contemporáneos
“En México no se está instrumentando una política real para salvar la vida y proteger a los mexicanos de los desastres naturales", afirmó el Doctor en Física, Romeo Pérez Ortiz.
El estudio fue publicado en la revista Science y revela que el cerebro utiliza un mecanismo específico para etiquetar ciertos recuerdos y fijarlos durante el sueño.
El récord del año más cálido pasó de 0.17 grados centígrados en 2016 a 14.98 grados centígrados en 2023.
El sistema CRISPR/Cas9 es considerado como el método más simple, versátil y preciso de manipulación genética.
Marx no fue un economista cualquiera, fue un verdadero científico dispuesto a sumergirse en los complejos andamiajes de las moléculas, las ecuaciones, el metabolismo de materia y energía para validar o rectificar sus teorías sobre economía.
El término “física térmica” causa curiosidad debido a que, en la división clásica de la física, no existe una rama como tal.
El matemático que opera y crea los objetos que la matemática estudia, si puede tener compromiso con la realidad, éste lo conduce a un proceso de establecer isovalencias entre los problemas reales y los objetos matemáticos.
La tenacidad en su trabajo le acompañó hasta una edad muy avanzada.
Ola de calor y sequía impactarán a los mexicanos más pobres
Explosión en Álvaro Obregón provoca la muerte de un adolescente
Pese a inversión millonaria, Línea B del Metro acumula fallas
Estudiantes del Politécnico marcha a Zacatenco
A ochenta años de la Victoria sobre el nazismo, ¿quién ganó la guerra?
Establecen acuerdos Rusia y Ucrania tras encuentro en Estambul
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador