Cargando, por favor espere...

Peter Dirichlet: en la génesis del análisis funcional
El matemático fue el primero en usar las funciones de variable compleja en la solución de problemas aritméticos, iniciando una fructífera área de investigación llamada: Teoría Analítica de Números.
Cargando...

Las profundas áreas de la matemática actual son consecuencia de la evolución conceptual de objetos cada vez más abstractos e interconectados entre sí mediante sistemas formales. La génesis de algunas áreas viene del planteamiento de problemas concretos, como en el caso del Análisis Funcional, área de activa investigación contemporánea. Uno de los personales que contribuyó en ese sentido fue el alemán Peter Dirichlet, quien nació el 13 de febrero de 1805 en Duren (Alemania); su formación transitó entre Alemania y Francia. Desde muy joven le apasionaba comprar libros y leerlos con pasión, estudió en el Colegio Jesuita de Colonia, en donde conoció al famoso físico y matemático George Ohnn (1789-1854), quién fue fundamental en su vocación de matemático. Habiendo terminado sus estudios secundarios, se fue a París para proseguir estudios, en donde conoció a grandes maestros de la escuela francesa: J. Fourier, S. Laplace, A. Legendre.

Peter Dirichlet decidió estudiar y profundizar la obra maestra de Carl Gauss: Disquisitions Aritmetical, en donde obtuvo relevantes resultados. Sin embargo, el problema que resolvió y lo llevó a la fama fue la solución del último Teorema de Fermat para n=5, causando admiración entre sus maestros, en especial en A. Legendre, quien colaboró en la solución. Su actividad académica empezó en 1827 en la Universidad de Breslau, y entre 1828 y 1855 en la Universidad de Berlín, como profesor asociado. En 1831 fue nombrado miembro de la Académia de Ciencias de Berlín. A la muerte de Carl Gauss, en 1855, Peter Dirichlet, lo sucedió en la Universidad de Gottinga, en donde conoció a Richard Dedekind y a su alumno Bernard Riemann. Sus clases eran de gran maestría, por su claridad expositiva; era ante todo un formador y entre sus discípulos figuran Ferbinand Eisenstein, Leopold Kronecker y Rudolf Lipschitz. Se casó con Rebeca Mendelssohn, hija del filósofo Moses Mendelssohn, defensor de los derechos civiles de los judíos.

Peter Dirichlet fue el primero en usar las funciones de variable compleja en la solución de problemas aritméticos, iniciando una fructífera área de investigación llamada: Teoría Analítica de Números. Tuvo una gran amistad con Joseph Fourier, que lo impulsó a estudiar profundamente las series trigonométricas, aportando criterios de convergencia y divergencia, para lo que estableció una nueva concepción de función (pedagógicamente usada en la actualidad). En Teoría de números estableció que la sucesión aritmética {a + nb / n en N}, donde a y b son primos entre sí, contiene un número infinito de números primos. Además demostró que la sucesión de sus recíprocos es divergente.

Peter Dirichlet también trabajó en la Teoría del Potencial de Newton, en donde estableció un principio que resultó clave para el desarrollo de una de las áreas más abstractas de la matemática pura y aplicada llamada Análisis Funcional. Bajo su concepción de función (para todo x en un intervalo, existe una única y), afirma que toda solución de una ecuación diferencial parcial, con condiciones en la frontera, debe minimizar una integral de energía. Dirichlet propuso una solución por métodos varicionales, hoy día se conoce como Principio de Dirichlet. Sin embargo, Karl Weierstrass encontró un contraejemplo demostrando su falsedad. Esta debilidad técnica fue superada por el famoso matemático David Hilbert, quien establece condiciones de suavidad en el contorno y concibe agrupar ciertas soluciones (funciones); fue la primera vez en que se habló de los famosos espacios funcionales y se empleó una poderosa herramienta teórica para la naciente mecánica cuántica, actualmente llamada Análisis Funcional.

Peter Dirichlet murió el 5 de mayo de 1859 en Gottinga (a meses de la muerte de su esposa). Se dice que su cerebro se conserva en el Departamento de Fisiología de la Universidad de Gottinga. Póstumamente, su amigo y colega Richard Dedekind publicó las clases de Peter Dirichlet bajo el título Lecciones sobre Teoría de Números, en donde también se encuentran los resultados más relevantes de este matemático, que dejara una profunda huella para la posteridad.


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

Por la relación comercial que tiene México con Estados Unidos, el 53.85 por ciento del café que se exporta de nuestro país tiene como destino Estados Unidos.

Pareciera contraintuitivo que alguien haga su vida al lado de grandes montañas que sacan humo y fuego, sin embargo, ese material que sacan por sus chimeneas hace que los suelos que los rodean sean fértiles...

La sonda Mars Express halló “inmensos” depósitos de 3.7 kilómetros de espesor, ubicados bajo el suelo del ecuador de Marte, estructuras que sugieren la presencia de hielo.

“Las redes sociales en general son una amenaza para la salud mental de los menores”, declaró el alcalde de la ciudad de Nueva York, Eric Adams.

Este extraordinario hombre fue capaz de abordar problemas relevantes de la matemática de su época y hacer aportes trascendentes, abriendo nuevas áreas de investigación que hasta el día de hoy se siguen desarrollando.

Esta herramienta prescinde de las cuerdas vocales y restaura el habla ofreciendo esperanza para pacientes con trastornos de la voz.

Un estudio reveló que “quejarse” es uno de los hábitos que más puede generar daños en el cerebro, tanto para la resolución de problemas como para la memoria.salu

La tecnología hace posible que las ventas en línea lleguen a más personas, sin importar donde se encuentren; por lo que cada vez más usuarios de la red realizan compras a través de internet.

El tren estará atravesando el segundo pulmón forestal de América Latina: la selva maya. Fragmenta el hábitat y además viola los derechos de todas las comunidades indígenas que viven en la zona, entre otras graves consecuencias.

La Nochebuena era una flor predilecta para los aztecas, zapotecas, zoques, chontales y totonacas.

Para la antigua cultura griega, los números naturales podían tener dos realizaciones, una como elemento de medición (lo llamaban magnitud) y otra como elemento de conteo.

Se trata de "una zona que está cubierta con nieve 10 meses al año, de difícil acceso por la altura y geografía que ostenta una tupida vegetación y bosque valdiviano".

“Para los mexicanos, el maíz está entrelazado con su vida, su historia y sus tradiciones; no es solo un cultivo, sino el centro de su identidad", Sin embargo, hoy el maíz no cubre la demanda nacional, entre otras deficiencias.

Niños inquietos e inteligentes como el que me preguntó hay muchos en nuestro país; pero muy pocos son rescatados y apoyados para continuar con sus estudios

Carl Jacobi desarrolló una intensa labor de investigación, su obra científica publicada por la Academia de Ciencias de Berlín asciende a ocho volúmenes.