Cargando, por favor espere...

Lobachevski y la geometría hiperbólica
Sus ideas científicas fueron muy revolucionarias para su tiempo y no fueron comprendidas por sus contemporáneos
Cargando...

Nikolái Ivánovich Lobachevski es considerado uno de los educadores más influyentes de la Rusia zarista en el siglo XIX, uno de los primeros matemáticos que criticó los postulados de Euclides y revolucionó la teoría de éste con la geometría lobachevskiana o hiperbólica. Enseñó matemática durante 40 años en la Universidad Imperial de Kazán, de la que fue rector 19 años, equipó bien y convirtió en una de las mejores instituciones educativas de Rusia.

El quinto postulado de Euclides señala que sobre un plano hay una única recta paralela a una recta ya existente. Esta afirmación fue refutada por Lobachevski, quien al cabo de nueve años de estudio concluyó que en lugar de una sola recta había una infinidad de rectas paralelas a la existente.

Esto puede encontrarse en su ensayo Una presentación concisa de los elementos de geometría con una prueba estricta del teorema sobre las paralelas (1826). Desafortunadamente, el trabajo no fue publicado por el Departamento de Física y Matemáticas de la Universidad de Kazán. Más tarde el manuscrito fue incluido en su nuevo resultado Sobre los elementos de la geometría (1829-1830) y vio la luz en el Boletín de Kazán.

Fue la primera publicación de geometría no euclidiana en la literatura mundial. Lobachevski consideró el postulado de las paralelas de Euclides una restricción arbitraria, ya que impide la descripción de las propiedades del espacio tridimensional. Lo que lo llevó a concluir que “en un plano a través de un punto que no se encuentra en la línea recta dada, pasa más de una línea recta que es paralela a la recta dada”. 

Esta teoría dio origen a la geometría hiperbólica que no incluía a la euclidiana, pero que la segunda podía obtenerse de la primera haciendo que la parte curva del espacio de Lobachevski se hiciera plana, es decir, que la curvatura tendiera a cero. Sus ideas científicas fueron muy revolucionarias para su tiempo y no fueron comprendidas por sus contemporáneos. Por ejemplo, su trabajo Sobre los elementos de la geometría, que presentó a la Academia de Ciencias en 1832, recibió opiniones negativas de parte del reconocido físico y matemático ruso Mijaíl Vasílievich Ostrogradski, quien reconoció posteriormente que no entendió nada, excepto dos integrales, una de las cuales, en su opinión, no se calculó correctamente.  

Lobachevski continuó desarrollando su geometría, seguro de sí mismo y a pesar de la incomprensión de la comunidad científica rusa. Publicó, entre 1835 y 1838, una serie de artículos sobre la geometría imaginaria en Escritos Científicos, de la Universidad de Kazán; más tarde fue publicado su trabajo Sobre nuevos elementos de la geometría con una teoría completa de las paralelas.

Sin embargo, sus resultados no fueron comprendidos en su tierra natal y recurrió a matemáticos extranjeros. En 1837 su artículo Geometría imaginaria, escrito en francés, apareció en la reconocida revista Krelle con sede en Berlín y, en 1840, publicó en alemán un pequeño libro titulado Estudios geométricos sobre la teoría de las paralelas que contenía una presentación clara y sistemática de sus ideas principales. Dos copias de la obra cayeron en manos de Karl Friedrich Gauss, considerado el rey de los matemáticos de la época.

Y resultó que Gauss se encontraba trabajando también en una geometría no euclidiana. Después de leer aquellas copias, Gauss compartió con sus amigos cercanos el enorme entusiasmo que sintió al darse cuenta que alguien más incursionaba en el tema. Por ejemplo, en una carta destinada al astrónomo Heinrich Christian Schumacher que data de 1846, calificó el resultado con las siguientes palabras: “usted sabe que desde hace 54 años comparto los mismos puntos de vista que Lobachevski; no encontré en el trabajo nada realmente nuevo. Pero en el desarrollo del tema, el autor no siguió el mismo camino que yo seguí. Su trabajo es ejecutado con maestría, en un verdadero espíritu geométrico”. 

Las investigaciones de Lobachevski hicieron que Gauss propusiera a la Academia Real de Ciencias de Gotinga que lo integrara como miembro corresponsal extranjero, pues consideraba que era el matemático más brillante del Estado ruso. La elección tuvo lugar en 1842 y fue el único reconocimiento científico que Lobachevski recibió en vida. Gauss quedó tan impresionado de los resultados geométricos del genio de Kazán que él mismo comenzó a estudiar ruso para entenderlos a detalle. Aquellos trabajos fueron reconocidos 12 años después de la muerte del geómetra ruso. Los modelos de la pseudosfera, proyectivo y euclidiano-conforme, creados respectivamente por los matemáticos italiano Eugenio Beltrami (1868), alemán Felix Klein (1871) y el francés Heinri Poincaré (1883), demostraron que la geometría de Lobachevski era tan sólida como lo era la geometría euclidiana.

Gracias a las contribuciones del matemático ruso surgieron la geometría riemanniana, la teoría general de los sistemas axiomáticos y el Programa de Erlangen de Felix Klein, indispensables para comprender la geometría del universo en el que habitamos. 


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

El uso de semillas mejoradas es una alternativa que garantiza la rentabilidad de las cosechas y la seguridad alimentaria, pero esa tecnología no es accesible para los 6.8 millones de personas que se dedican al sector agrícola.

Para alcanzar independencia política se requiere independencia económica, y esto exige soberanía científica y tecnológica; pero a los países ricos conviene que los pobres no lo consigan.

Una empresa estadounidense pretende transportar gas natural licuado (GNL) a Asia, pero las políticas ecológicas estadounidenses le imponen varias restricciones.

George Cantor sufrió una una profunda depresión por la muerte de su hijo, pero también por las ideas religiosas que tenía: Dios le revelaba todas las deducciones lógicas a las que llegó.

Como los animales de carga, nuestra rutina diaria se limita a dormir, alimentarnos y trabajar.

Las plantas no florecen en primavera, después del invierno, por casualidad. En realidad, la producción de flores ocurre como consecuencia de una “planeación”.

No dormir provoca que el cerebro elimine una cantidad significativa de neuronas, así como una perdida significativa de conexiones sinápticas; lo peor, la recuperación del sueño sería incapaz de revertir el daño.

La historia de esa constante comenzó desde que el hombre tuvo necesidad de construir pirámides con bases circulares y cilíndricas, como lo demuestran los papiros de Ahmes y Moscú.

Para aprovechar el petróleo crudo, éste debe someterse a un proceso de destilación fraccionada para separar sus diferentes componentes, dependiendo del tamaño de las moléculas y de sus puntos de ebullición (temperatura a la cual un líquido pasa a fase gas

Los daños causados al planeta comienzan a pasarnos factura. Las tasas de deforestación han afectado gravemente las distintas funciones de los bosques, además, su papel como regulador del clima está siendo severamente afectado.

En matemática, los pitagóricos demostraron que: la suma de las medidas de los ángulos interiores de un triángulo es 180°.

Toda investigación no es necesariamente científica, a veces se confunde con investigación tecnológica, o peor, con informes técnicos. Aclararemos estas confusiones en este artículo.

Este fenómeno tiene graves consecuencias para el medio ambiente. Elimina la capa de protección de las plantas, dejándolas desprotegidas a la acción del viento, el frío, la sequía y convirtiéndolas en presa fácil de los parásitos o plagas, que provocan su muerte.

La Organización Panamericana de la Salud señala que entre 2015 y 2050 en América Latina, el 68% de las mujeres serán más propensas a padecer demencia que los hombres.

“En México no se está instrumentando una política real para salvar la vida y proteger a los mexicanos de los desastres naturales", afirmó el Doctor en Física, Romeo Pérez Ortiz.