Cargando, por favor espere...

El hacer matemático en el Siglo XX
Los modos del pensamiento matemático influyen en su hacer, el Siglo XX ha sido testigo de al menos dos formas de este hacer, con marcada influencia ideológica.
Cargando...

Los modos del pensamiento matemático influyen en su hacer, el Siglo XX ha sido testigo de al menos dos formas de este hacer, con marcada influencia ideológica, que nos llega hasta nuestros días, aunque en el Siglo XXI está experimentando una forma de hacer más interdisciplinaria, más utilitaria, en el fondo sigue siendo el mismo hacer con la misma ideología.

Los periodos que marcaron estas dos formas de hacer están comprendidos entre dos guerras mundiales, mientras Europa se debatía en una crisis política y militar, los matemáticos pensaban en proponer nuevas formas de pensamiento matemático para luego implantar su ideología a todo el mundo.

Este primer periodo nace en 1914 al inicio de la Primera Guerra Mundial, en donde se establece una pugna epistémica, entre el intuicionismo de J. Brouwer (1881-1966) y el formalismo de David Hilbert (1862-1943). Por un lado, el intuicionismo propugna un constructivismo en la creación de los objetos matemáticos, dejando de lado todo conocimiento matemático que incluya demostraciones por el absurdo y la existencia declarativa de los objetos matemáticos. Por otro lado, el formalismo propone eliminar la naturaleza de los objetos matemáticos para convertirlos en símbolos sintácticos y semánticos, gobernados por reglas iniciales de juego, llamados axiomas, dándole a la matemática una libertad sin precedentes en la historia. La visión formalista de Hilbert fue concebida gracias a dos hechos importantes: en 1908, E. Zermelo (1871-1953) propone el primer sistema formal y la puesta en escena de la naciente teoría de conjuntos por George Cantor. Aunque se propone ontologías y epistemologías distintas, ambas tienen el mismo propósito: contribuir a la fundamentación del hacer matemático, generar un único modo de pensamiento libre de ambigüedades y con mayor solidez.

El segundo periodo nace finalizando la Segunda Guerra Mundial en 1945, aunque se vino gestando desde 1935 con el nacimiento del grupo Bourbaki, después de 1945 y hasta 1989 –fecha en que el grupo desapareció–, donde tuvo la mayor influencia. La ideología Bourbakiana, de establecer un renacer de todo el conocimiento matemático, en base a un sistema axiomático formal riguroso, con un hacer matemático absolutamente rígido, eliminando aspectos que no contribuyen a la generación de mayores y mejores estructuras, basados en una lógica impecable y muy sintética. Esta característica se ha conservado hasta el día de hoy, donde prima la difícil lectura de los paper, pero con el potencial de ser leído y estudiado por cualquier ser humano entrenado. A pesar que el grupo Bourbaki ha desaparecido, quedó la secuela de los textos matemáticos que han seguido su ideología, formando a los matemáticos de todo el mundo desde los años 60 del Siglo XX. 

Estas dos formas del hacer y pensar matemático del Siglo XX están transitando a formas más sofisticadas pero a la vez más colaborativas; el matemático se aleja cada vez más de su antigua soledad para compartir su pensamiento y trabajo con otros matemáticos. Incluso es más común ver colaboraciones interdisciplinarias, contribuyendo a la matematización de otras disciplinas. Hoy, algunos matemáticos se sienten atraídos por lo interdisciplinario. Aunque ya no tienen el peso político de antes, son mediáticos, quieren ser famosos en la divulgación o difusión e incluso muestran sus dotes artísticas y de comunicación. Quieren sentirse útiles en esta sociedad que cada día demanda más de sus científicos; pero en el fondo, en su trabajo, siguen siendo el mismo personaje, como lo fue Euclides del Siglo III a.C., o como lo es Terence Tao en la actualidad, rígido, formal, muy estructurado, en otras palabras, un neobourbakiano.

En la actualidad, el hacer matemático tiene distintos rostros que le dan alguna imagen académica dentro de la sociedad matemática, por ejemplo, solución de problemas –siempre que el problema sea importante–; dominar alguna técnica o método para crear nuevos; crear nuevas teorías, es decir, generar un nuevo marco conceptual para unificar o generalizar resultados existentes; descubrir un nuevo fenómeno matemático, conexión o contraejemplo. Los Bourbaki pretendían consolidar un cuerpo único de conocimiento; a través de sus Elementosel neoboubakianismo ha conseguido sólo establecer raíces comunes entre distintos árboles que constituyen el conocimiento matemático. 


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

Es sabido que no existe un premio Nobel para matemáticos.

Las lombrices desempeñan un papel fundamental en la producción de granos; sin ellas no podríamos comer pan dulce ni esos deliciosos bolillos recién horneados o tortillas recién salidas del comal.

Los resultados matemáticos de Gödel han causado una grieta en el conocimiento matemático, misma que hoy tiene consecuencias filosóficas profundas.

Es el corazón del marxismo hay una forma de concebir la política revolucionaria que, a mi juicio, es necesario comprender, asimilar y recordar siempre.

¿Cuál es el carácter distintivo de la dialéctica? Pongamos el caso de la guerra, ¿es nociva o es perjudicial? Desde el punto de vista de la dialéctica, es indispensable saber qué guerra se está planteando. Aquí la verdad siempre es concreta.

El ser humano ha entendido las diferentes formas de vida a través de la observación, distinguiendo las similitudes y diferencias de los organismos.

Generaciones nacen inmersas en las redes, mismas que onstituyen la forma predominante de relacionarse con los otros. Algunos factores que propician el ciberacoso son: la viralidad, la rapidez de propagación de las publicaciones y el anonimato del agresor.

Algunas de esas presas, como Villa Victoria, al oeste de la capital, están a un tercio de su capacidad normal, y falta mes y medio para que caiga alguna lluvia importante.

En el ámbito de la astronomía, Galileo no solo confirmó que la Tierra se movía en torno al Sol y se burló de los inquisidores del Santo Oficio.

La vida de Henrik fue marcada por la pobreza, la fatalidad y la incomprensión; aun así, su mentalidad matemática, lo llevó a mostrar su genialidad, con ideas originales, mostrando caminos nuevos a los matemáticos de su época.

Los humanos, a diferencia de los animales, son enseñados en familias, escuelas y grupos humanos insertos en sociedades cambiantes en términos estructurales e ideológicos.

Científicos de la Universitat Pompeu Fabra de Barcelona descubrieron cómo frenar la producción de acné, al alterar de manera exitosa el genoma del 'Cutibacterium acnes', una bacteria cutánea relacionada con la aparición de la afección cutánea.

Una consecuencia sorprendente del resultado BanachTarski, es demostrar que se puede particionar una bola del tamaño de la tierra, reordenar esta partición y obtener una bola del tamaño del sol.

El sustento del conocimiento matemático se desarrolló en la antigua Grecia; uno de los filósofos que contribuyó a su desarrollo fue Aristóteles, quien planteó las leyes básicas del pensamiento humano a fin de obtener deducciones válidas.

Ninguno de estos libros me parece copia o similares a los libros estándar.