Cargando, por favor espere...

El hacer matemático en el Siglo XX
Los modos del pensamiento matemático influyen en su hacer, el Siglo XX ha sido testigo de al menos dos formas de este hacer, con marcada influencia ideológica.
Cargando...

Los modos del pensamiento matemático influyen en su hacer, el Siglo XX ha sido testigo de al menos dos formas de este hacer, con marcada influencia ideológica, que nos llega hasta nuestros días, aunque en el Siglo XXI está experimentando una forma de hacer más interdisciplinaria, más utilitaria, en el fondo sigue siendo el mismo hacer con la misma ideología.

Los periodos que marcaron estas dos formas de hacer están comprendidos entre dos guerras mundiales, mientras Europa se debatía en una crisis política y militar, los matemáticos pensaban en proponer nuevas formas de pensamiento matemático para luego implantar su ideología a todo el mundo.

Este primer periodo nace en 1914 al inicio de la Primera Guerra Mundial, en donde se establece una pugna epistémica, entre el intuicionismo de J. Brouwer (1881-1966) y el formalismo de David Hilbert (1862-1943). Por un lado, el intuicionismo propugna un constructivismo en la creación de los objetos matemáticos, dejando de lado todo conocimiento matemático que incluya demostraciones por el absurdo y la existencia declarativa de los objetos matemáticos. Por otro lado, el formalismo propone eliminar la naturaleza de los objetos matemáticos para convertirlos en símbolos sintácticos y semánticos, gobernados por reglas iniciales de juego, llamados axiomas, dándole a la matemática una libertad sin precedentes en la historia. La visión formalista de Hilbert fue concebida gracias a dos hechos importantes: en 1908, E. Zermelo (1871-1953) propone el primer sistema formal y la puesta en escena de la naciente teoría de conjuntos por George Cantor. Aunque se propone ontologías y epistemologías distintas, ambas tienen el mismo propósito: contribuir a la fundamentación del hacer matemático, generar un único modo de pensamiento libre de ambigüedades y con mayor solidez.

El segundo periodo nace finalizando la Segunda Guerra Mundial en 1945, aunque se vino gestando desde 1935 con el nacimiento del grupo Bourbaki, después de 1945 y hasta 1989 –fecha en que el grupo desapareció–, donde tuvo la mayor influencia. La ideología Bourbakiana, de establecer un renacer de todo el conocimiento matemático, en base a un sistema axiomático formal riguroso, con un hacer matemático absolutamente rígido, eliminando aspectos que no contribuyen a la generación de mayores y mejores estructuras, basados en una lógica impecable y muy sintética. Esta característica se ha conservado hasta el día de hoy, donde prima la difícil lectura de los paper, pero con el potencial de ser leído y estudiado por cualquier ser humano entrenado. A pesar que el grupo Bourbaki ha desaparecido, quedó la secuela de los textos matemáticos que han seguido su ideología, formando a los matemáticos de todo el mundo desde los años 60 del Siglo XX. 

Estas dos formas del hacer y pensar matemático del Siglo XX están transitando a formas más sofisticadas pero a la vez más colaborativas; el matemático se aleja cada vez más de su antigua soledad para compartir su pensamiento y trabajo con otros matemáticos. Incluso es más común ver colaboraciones interdisciplinarias, contribuyendo a la matematización de otras disciplinas. Hoy, algunos matemáticos se sienten atraídos por lo interdisciplinario. Aunque ya no tienen el peso político de antes, son mediáticos, quieren ser famosos en la divulgación o difusión e incluso muestran sus dotes artísticas y de comunicación. Quieren sentirse útiles en esta sociedad que cada día demanda más de sus científicos; pero en el fondo, en su trabajo, siguen siendo el mismo personaje, como lo fue Euclides del Siglo III a.C., o como lo es Terence Tao en la actualidad, rígido, formal, muy estructurado, en otras palabras, un neobourbakiano.

En la actualidad, el hacer matemático tiene distintos rostros que le dan alguna imagen académica dentro de la sociedad matemática, por ejemplo, solución de problemas –siempre que el problema sea importante–; dominar alguna técnica o método para crear nuevos; crear nuevas teorías, es decir, generar un nuevo marco conceptual para unificar o generalizar resultados existentes; descubrir un nuevo fenómeno matemático, conexión o contraejemplo. Los Bourbaki pretendían consolidar un cuerpo único de conocimiento; a través de sus Elementosel neoboubakianismo ha conseguido sólo establecer raíces comunes entre distintos árboles que constituyen el conocimiento matemático. 


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

El sustento del conocimiento matemático se desarrolló en la antigua Grecia; uno de los filósofos que contribuyó a su desarrollo fue Aristóteles, quien planteó las leyes básicas del pensamiento humano a fin de obtener deducciones válidas.

La ANEPPMAC realizó en la UAG un evento deportivo, cultural y científico en el que alumnos de la Escuela Antonio Caso Zapopan consiguieron primeros lugares por sus proyectos.

Este extraordinario hombre fue capaz de abordar problemas relevantes de la matemática de su época y hacer aportes trascendentes, abriendo nuevas áreas de investigación que hasta el día de hoy se siguen desarrollando.

A la naturaleza no le importa si los machos son atraídos hacia los machos o las hembras hacia las hembras. Es mas bien la ideología humana la que castiga estos comportamientos, argumentando que solo prohíbe lo que es “antinatural”.

El equipo de la misión señaló que continúa trabajando para mantener operativa a la nave Voyager 1

Este primero de diciembre, después de medio día, se esperan apagones en señales de radio y GPS; así como en teléfonos celulares y el internet, esto luego de que una tormenta solar denominada “Caníbal” golpee nuestro planeta.

Pocas son las mujeres que han obtenido frutos tan importantes en las matemáticas a la par de muchos hombres. Es el caso de Ada Lovelace, a ella se reconoce como la pionera de la programación de la máquina analítica.

La empresa Tesla, del multimillonario Elon Musk, pretende fabricar nuevas instalaciones en tres estados de la República Mexicana.

El científico Alejandro Macías alertó que en cuanto entre a México la variante JN.1, denominada Pirola, lo hará con tal fuerza que podrá haber saturación de hospitales y de camas de terapia intensiva.

Ante el actual embate del cambio climático, ¿cómo superará la humanidad dicha contradicción? ¿Mediante la competencia o la cooperación?

Las muertes por sobredosis de fentanilo alcanzaron otro récord en EE. UU. En sólo un año (2021-2022) casi 109 mil personas perdieron la vida por consumir esta sustancia.

En la primera mitad del Siglo XX aparece el fenómeno de la masificación de la educación matemática, periodo en que la matemática entra en la revolución del formalismo hilbertiano.

En matemática, los pitagóricos demostraron que: la suma de las medidas de los ángulos interiores de un triángulo es 180°.

La bacteria P. luminiscens actuó sobre las heridas de los soldados como un como un antibiótico muy eficaz, lo que explica por qué las heridas fluorescentes sanaban más rápido que las heridas sin la bacteria fluorescente. Seguramente, esta bacteria salvó la vida de varios soldados, ¿cómo pasó?

El mal manejo, la extracción ilegal y la mala información, así como los mitos y el desarrollo turístico, han llevado a pérdidas importantes en el número de poblaciones de la cacerolita de mar.