Cargando, por favor espere...

Origen y desarrollo del cálculo infinitesimal (2/2)
El gran pensador griego demuestra que el continuo no puede estar hecho de un conjunto de indivisibles (átomos) o de puntos (“aquello indivisible en partes”), como lo habían planteado Leucipo, Demócrito y Euclides.
Cargando...

Continuando con la discusión acerca del movimiento y la continuidad, reproduciré algunos pasajes escritos por el filósofo y científico Aristóteles en su obra Física, libro VI. En el apartado El continuo como lo infinitamente divisible, el gran pensador griego demuestra que el continuo no puede estar hecho de un conjunto de indivisibles (átomos) o de puntos (“aquello indivisible en partes”), como lo habían planteado Leucipo, Demócrito y Euclides. Esta definición nos lleva a una contradicción, advirtió Aristóteles, porque “ni los extremos de los puntos pueden ser uno, ya que en un indivisible no puede haber un extremo que sea distinto de otra parte, ni tampoco pueden estar juntos, pues lo que no tiene partes no puede tener extremos, ya que un extremo es distinto de aquel de lo cual es extremo”.

Con este argumento lógico, no solamente demostró Aristóteles la divisibilidad infinita de lo continuo, sino también la del tiempo y del movimiento, como lo prueba su siguiente razonamiento: “si todo movimiento es divisible y si una cosa en movimiento con una velocidad igual recorre una distancia menor en un tiempo menor, entonces el tiempo también será divisible”. Usando este resultado demostró que si “dos cuerpos están en movimiento, el más rápido recorrerá una distancia mayor en un tiempo igual, una distancia igual en un tiempo menor y una distancia mayor en un tiempo menor”, con lo que siempre es posible que el móvil más rápido no solo alcance al móvil más lento, sino que lo rebase, tanto como se quiera. En el caso de Aquiles y la tortuga, por ejemplo, el más veloz entre los aqueos logrará rebasar sin mucha dificultad al reptil más lento del planeta, que se desplaza a una velocidad promedio de 0.040 km/h. Con esta argumentación, el estagirita demostró a Zenón de Elea el error de su lógica.  

Sin embargo, para cerrar la discusión planteada por Zenón en sus paradojas, Aristóteles tuvo que demostrar la continuidad del tiempo. Al respecto argumentó: “puesto que todo movimiento es en el tiempo y en todo tiempo algo puede moverse más rápidamente o más lentamente, en todo tiempo podrá haber un movimiento más rápido o más lento”. Si esto es así, razonó, es necesario que el tiempo sea continuo, entendiendo al continuo como aquello “divisible en divisibles siempre divisibles”. Dos mil cien años después, el matemático alemán Georg Cantor le daría la razón al demostrar la densidad del conjunto de los números racionales e irracionales, es decir, la existencia infinita de números racionales e irracionales, entre dos cualesquiera de ellos, respectivamente. Con esta aportación matemática quedó demostrada formalmente la continuidad de la recta real, aunque Aristóteles ya lo había resuelto lógicamente. 

 Sin embargo, quedaba pendiente un problema todavía por resolver: el carácter infinito del tiempo y magnitud, tanto si son considerados infinitamente pequeños (división infinita) o infinitamente grandes (adición infinita). Ambas respuestas las proporcionó Aristóteles con sus dos tipos de infinito: el infinito potencial, definido como proceso de crecimiento o de división sin final e infinito actual, considerado como “una totalidad completa”. Una vez respondida la pregunta, Aristóteles pasa a las siguientes consideraciones: “si el tiempo es infinito con respecto a sus extremos, así también lo será la longitud”; “si el tiempo es infinito con respecto a la división, así también lo será la longitud”; y “si el tiempo es infinito en ambos respectos, la magnitud será también infinita en ambos respectos”. Guiándose con esta aseveración, Aristóteles demostró lógicamente que es posible recorrer un espacio infinito, pero solo en un tiempo infinito: “no es posible durante un tiempo finito tocar cosas que sean infinitas por su cantidad, pero se las puede tocar si son infinitas por su división, porque en este sentido el tiempo mismo es infinito. Así el tiempo en el que es recorrida una magnitud no es finito sino infinito y las infinitas cosas no son tocadas en un tiempo finito sino en infinitos intervalos de tiempo”. Con esto, Aristóteles zanjó, de una vez y por todas, las paradojas planteadas por Zenón.

No por nada Aristóteles se había ganado el respeto y admiración de Carlos Marx al considerarle como el “pensador dotado de una ciencia verdaderamente enciclopédica”. Aquí vemos, una vez más, la aportación de este gran pensador al mundo del cálculo infinitesimal.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

Después de un mes repleto de celebraciones en el que la población adorna sus casas, hace regalos, convive y festeja, podemos preguntarnos: ¿cuál es el costo ambiental de las fiestas navideñas y de fin de año?

La influencia que han ejercido las ideas de Platón (Atenas, 429-347 a. C.) en la mente de los matemáticos perdura hasta nuestros días. Matemáticos contemporáneos como G. H. Hardy y Kurt Gödel son declarados platonistas.

“El pensamiento científico inventa conceptos implícitamente definidos mediante axiomas, postulados arbitrariamente, sin otra exigencia que la ausencia de contradicción", así se instauró en la matemática el paradigma que caracteriza hoy a la matemática.

El término “transgénico” significa la inserción de un gen extraño en un organismo, acción propia de la tecnología biológica que consiste en transferir un fragmento del ADN de una célula a otra.

Los humanos, a diferencia de los animales, son enseñados en familias, escuelas y grupos humanos insertos en sociedades cambiantes en términos estructurales e ideológicos.

La relación entre la ciencia y el dinero, entre la técnica y el negocio, ha sido ampliamente discutida por los grandes pensadores de la humanidad.

La comunicación no es la única ni es exclusiva de los seres humanos. Acá te contamos por qué.

El aspecto físico no es suficiente para convencer a las parejas y, como sucede con los pájaros, entonces se recurre al talento artístico mediante serenatas y bailes elaborados.

Mirar directamente al Sol durante un eclipse puede causar daños irreversibles en la retina, incluso sin sentir dolor; como sucedió en 1991.

“El financiamiento es la columna vertebral de un sistema nacional de ciencia, tecnología e innovación. Desde aquí se aplican las políticas públicas, se incentiva o se corrige".

La Nochebuena era una flor predilecta para los aztecas, zapotecas, zoques, chontales y totonacas.

“No creo que quienes nunca lo escucharon puedan darse cuenta de lo magnífica que fue la enseñanza de Hermite; desbordante de entusiasmo por la ciencia, que parecía cobrar vida en su voz y cuya belleza nunca dejaba de comunicarnos".

Ramón Picarte siempre pensó que la matemática debería ser un aporte para sacar a las personas de la pobreza; con esa idea organizó e impulsó diferentes sociedades cooperativas de artesanos y trabajadores de Santiago.

Investigadores del Instituto de Ingeniería (II) de la UNAM atribuyen la generación de microsismos en la CDMX a la falla sísmica denominada Plateros-Mixcoac localizada en la alcaldía Álvaro Obregón.

La alquimia árabe resultó ser una inspiración a Roger Bacon y, más tarde, a Isaac Newton.