Cargando, por favor espere...
Un tema que ha inquietado al hombre desde hace mucho tiempo es el del cálculo de áreas de terrenos accidentados para el cultivo. En las orillas del río Nilo, por ejemplo, los agricultores exigieron a su faraón un pago justo por el terreno que les quedaba después de cada inundación ocasionada por el crecimiento del río Nilo que llegaba a durar hasta 100 días, según el gran historiador Herodoto. En un principio, calcular el impuesto que tenía que pagar un agricultor no representaba mucha dificultad, pues a cada uno se le entregaba un terreno cuadrangular o rectangular. Pero después de la inundación, una buena parte de dicho terreno desaparecía, perdía su forma inicial, hasta convertirse en un terreno con forma de una amiba. El problema era ahora cómo encontrar el área aproximada de este terreno para calcular su respectivo impuesto. Aquí fue donde los matemáticos egipcios comenzaron a usar el razonamiento para crear nuevas herramientas matemáticas. Gracias a esta exigencia, el terreno en forma de amiba pudo dividirse en rectángulos y triángulos cada vez más pequeños, lo que facilitó el cálculo de áreas y, por lo tanto, el impuesto justo correspondiente a dicha área.
Sin embargo, llegar a aquel nivel de conocimiento no fue tarea fácil para el hombre, pues había recónditos donde era casi imposible encajar una pieza rectangular o triangular. El hombre tuvo la necesidad de abstraer esta realidad, crear particiones cada vez más finas y recurrir al concepto de lo infinitamente pequeño para poder encontrar áreas infinitesimales. Así fue como surgió el método de exhausión de Eudoxo de Cnido y el método por reducción al absurdo de Arquímedes de Siracusa. Con ellos, el hombre logró calcular áreas de curvas más complejas como el del círculo y el de la parábola. Estos conocimientos fueron reforzados después con las aportaciones de los matemáticos italianos Torriceli y Cavalieri, quienes introdujeron el concepto de lo infinitamente pequeño. Pero llegarían Fermat, Descartes, Leibniz y Newton para revolucionar el cálculo infinitesimal desarrollado por los griegos. Los dos últimos crearon una máquina diferencial e integral que ayudó a encontrar sin mucho esfuerzo el área bajo cualquier curva. Así nació lo que conocemos como el Teorema Fundamental del Cálculo. Sin embargo, a esta máquina le faltaba una explicación detallada de su funcionamiento. Aunque había una relación íntima entre el cálculo diferencial e integral, ambas herramientas inversas una con respecto a la otra, faltaba hacer visible el mecanismo de la segunda. Aquí es donde destacó la aportación del matemático alemán Bernhard Riemann, quien describió la integral definida como una aproximación del área bajo la curva, al dividir dicha curva en rectángulo o trapecios. Esta aproximación es conocida hoy como la suma de Riemann y consiste en encontrar el área bajo una curva por medio de rectángulos donde la altura de cada rectángulo es igual al valor de la función en cualquier punto intermedio de la base.
Para ejemplificar, trácese una parábola f(x)=x2 con el intervalo dominio [0, 1] (el resultado es el mismo para el caso [0, 1]). Procedamos a calcular el área bajo esta curva cuadrática. Dividimos el intervalo [0, 1] en 4 partes: []. Posteriormente, escogemos el punto medio de cada base de cada rectángulo, la cual mide
. Así, el punto medio de la base del primer rectángulo sería
; para el segundo,
; para el tercero,
; y para el cuarto,
. Calculamos ahora el área: para el primer rectángulo tenemos
; para el segundo,
; para el tercero,
; y finalmente, para el cuarto,
. Al sumar estas áreas obtenemos aproximadamente 0.328; un valor cercano a un tercio, el cual puede calcularse aplicando directamente la integral definida a la función cuadrática. Si el intervalo [0, 1] no lo dividimos en 4 partes, sino ahora en 8 partes o en n partes, es claro que el valor exacto al que llegaríamos sería un tercio. Pero no todas las figuras son suaves y hermosas, hay figuras en las que el método directo de integración y el Teorema Fundamental del Cálculo fallan. De ahí que la suma de Riemann cobra importancia y vigencia, pues funciona para cualquier curva y es entendible y comprensible para todo aquel que sepa aceptablemente la aritmética y el álgebra.
La importancia de su trabajo científico radicó en que se adelantaron a predecir lo que pasaría antes de la completa destrucción de la capa de ozono (O3).
Criticó al racionalismo al afirmar que la razón humana debe seguir las razones del corazón por medio de la gracia divina en la fe cristiana, convirtiéndose en un apologista del cristianismo, dando inicio a la corriente filosófica del existencialismo.
La polinización es considerada fundamental para el bienestar humano. Sin embargo, esta actividad está en peligro por la baja en las poblaciones de polinizadores dado el calentamiento global, y la degradación del aire, el agua y el suelo.
Serán las masas populares quienes realicen el cambio para que disfruten su trabajo creador
El ser humano tiene la capacidad de obtener e interpretar la información que obtiene de su medio ambiente para generar una respuesta, en forma de movimiento.
La revista National Geographic refiere que sí existe la posibilidad de que haya agua en el núcleo de la Tierra y presume que dicho líquido podría ser "la causa de la misteriosa capa cristalina" que lo rodea.
Por la relación comercial que tiene México con Estados Unidos, el 53.85 por ciento del café que se exporta de nuestro país tiene como destino Estados Unidos.
La lucha por el control de los datos personales se traduce en la posibilidad de poder económico, político e ideológico. De manera permanente somos vigilados por empresas y funcionarios.
Un tema que ha inquietado al hombre desde hace mucho tiempo es el del cálculo de áreas de terrenos accidentados para el cultivo.
El cero, concebido como ausencia de cantidad, no existía en el mundo griego, puesto que no creían en el no ser; su presencia se vino a establecer muy paulatinamente.
El maestro de hoy, no todos desde luego, pero sí la mayoría, ya no enseña a su alumno a razonar y analizar.
El FHI recomienda no obstante guardar la vacuna de J&J por si fuera necesario usarla en una situación en la que el contagio aumente de forma dramática en Noruega.
Ingenuity dispone de dos cámaras, una en blanco y negro para la navegación y otra en color, que está orientada para tomar imágenes del terreno.
Marx añade: “… por más que la mayor fuente de suicidios corresponda principalmente a la miseria, los encontramos en todas las clases, entre los ociosos ricos tanto como entre artistas y políticos”.
La vida de Mendel es un ejemplo clásico de perseverancia. Aunque al principio sus observaciones no tuvieron relevancia para la comunidad científica, biólogos y botánicos llegaron a sus mismas conclusiones décadas después de su muerte.
Escrito por Romeo Pérez
Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.