Cargando, por favor espere...
Cavalieri y Torricelli, ambos discípulos de Galileo, hicieron aportaciones significativas al cálculo infinitesimal. El primero desarrolló el método de los indivisibles, una herramienta matemática que sirvió para calcular: 1) el área de figuras planas por medio de suma de infinitos segmentos paralelos a la base y 2) volumen de sólidos por medio de suma de infinitas superficies planas paralelas a la base. Esta forma ingeniosa de encontrar áreas y volúmenes por Cavalieri fue retomada en el Siglo XIX por el matemático alemán Bernhard Riemann para expresar la integral por medio del límite de su suma, conocida hoy como suma de Riemann.
El método de los indivisibles creado por Cavalieri le permitió encontrar el área existente entre un triángulo parabólico y el volumen de una pirámide. Además, pudo encontrar de manera precisa áreas bajo curvas de tipo parabólico, cúbico hasta curvas de grado nueve con el uso de la fórmula , s=1, 2, 3,…,9 y
, proporcionado por él. Fórmula que se generalizaría después con los matemáticos franceses Fermat, Pascal y Roberval para el cálculo de áreas de curvas de tipo y=xn, con n en el conjunto de los números naturales.
El segundo italiano es reconocido por el uso de series convergentes y divergentes para el cálculo del volumen de un sólido de revolución, conocido como trompeta de Torricelli. Este sólido cumple con la característica de que el área de su superficie es infinita, pero su volumen finito. Para simplificar, considérese la curva xy=1. Es inmediato notar que tanto el área bajo la curva y=1/x como el área de la superficie de revolución obtenida al girar dicha curva alrededor del eje X es infinita, pero el volumen de sólido de revolución es finito. Para demostrar esta afirmación tómese como integrandos, respectivamente, las funciones y=1/x y y=/x^2 e intégrese en el intervalo ,. Desde luego que Torricelli no usó el cálculo integral como la conocemos hoy, pues esta herramienta matemática surgiría después con Leibniz y Newton. Las herramientas usadas por Torricelli fueron las series y el método de los indivisibles proporcionado ya por Cavalieri. Para ello, Torricelli inscribió infinitos cilindros en la trompeta, uno dentro del otro para cada x en el eje de las abscisas. Es claro que el volumen de cada cilindro inscrito iba disminuyendo conforme el valor de x crecía hacia el infinito. Para encontrar el volumen de los cilindros, Torricelli recurrió al método de los indivisibles de Cavalieri. Luego usó las series para sumar los volúmenes de los diferentes cilindros y demostró que la serie convergía, es decir, el volumen era finito. La serie resulta convergente, debido a que el volumen de la trompeta de Torricelli es acotado por arriba por la suma de los volúmenes de los cilindros de altura unidad. Por lo tanto, si acotamos el volumen de los cilindros de radio 1/x, con x=1, 2, 3,…, n, … y altura unidad, el resultado se sigue inmediatamente. En efecto, el volumen resultó ser menos estricto que la serie de los inversos de los cuadrados, la cual ya se sabía que convergía, pues es posible acotarla superiormente por una serie telescópica, la cual desde luego era convergente. Así fue como Torricelli demostró que el volumen de la trompeta que lleva su nombre era finito y menor a 2 π. Para demostrar la infinitud del área de la superficie, Torricelli nuevamente recurrió a las series, esta vez demostró que el área de la superficie era mayor que la serie armónica estudiada ya por Nicolás de Oresme (mediados del Siglo XIV), la cual es divergente. Por lo tanto, al ser el área de la superficie mayor que la serie armónica, resulta ser infinita.
Surge aquí la pregunta de todos, ¿existirá un sólido cuyo volumen sea infinito, pero el área de su superficie sea finita? La respuesta es no. No existe un sólido con esas características. La demostración la proporcionaré en mi siguiente colaboración.
Cavalieri y Torricelli pudieron usar las series convergentes y divergentes gracias al desarrollado concepto del infinito adquirido ya en aquella época en los trabajos de Pietro Mengoli sobre la serie telescópica y de Nicolás de Oresme sobre la serie armónica.
La vida de Mendel es un ejemplo clásico de perseverancia. Aunque al principio sus observaciones no tuvieron relevancia para la comunidad científica, biólogos y botánicos llegaron a sus mismas conclusiones décadas después de su muerte.
El consumo de bebidas azucaradas fue responsable de 1 de cada 10 nuevos casos de diabetes tipo 2 y 1 de cada 30 casos de enfermedades vasculares en 2020.
“Para los mexicanos, el maíz está entrelazado con su vida, su historia y sus tradiciones; no es solo un cultivo, sino el centro de su identidad", Sin embargo, hoy el maíz no cubre la demanda nacional, entre otras deficiencias.
Investigadores, indican que hace dos millones de años los primeros humanos tenían la capacidad y la tecnología necesarias para explotar de forma continua una variedad de hábitats cambiantes.
La bacteria P. luminiscens actuó sobre las heridas de los soldados como un como un antibiótico muy eficaz, lo que explica por qué las heridas fluorescentes sanaban más rápido que las heridas sin la bacteria fluorescente. Seguramente, esta bacteria salvó la vida de varios soldados, ¿cómo pasó?
Un profundo conocimiento de la diversidad de climas y suelos ejerce una influencia positiva en la productividad de cultivos específicos, desde los campos de aguacate en Michoacán hasta los de agave para la producción de tequila en Jalisco.
La irracionalidad ayuda al hombre a comprender la continuidad y la discontinuidad de la materia.
Ayer, el Telescopio Espacial James Webb reveló la imagen más clara hasta la fecha del universo primitivo, que se remonta a 13 mil millones de años, dijo la NASA el lunes.
Los ejemplos más conocidos son los invernaderos, pero no son los únicos, existen también las casas sombra, los microtúneles, los túneles y otras estructuras utilizadas dependiendo del cultivo y la región climática.
El club de los matemáticos está constituido por un conjunto de seres humanos con alta formación matemática y capaces de inventar nuevos teoremas.
El acceso a las vacunas “es uno de los retos definitorios de la pandemia”, afirmó el máximo responsable de la agencia de salud de Naciones Unidas.
La revista National Geographic refiere que sí existe la posibilidad de que haya agua en el núcleo de la Tierra y presume que dicho líquido podría ser "la causa de la misteriosa capa cristalina" que lo rodea.
Hablar de la existencia de la realidad ha sido un problema filosófico muy discutido. En este contexto, qué tipo de realidad es un objeto matemático, es una pregunta que abordaremos en este artículo.
Los mapas son representaciones gráficas de la superficie terrestre.
El THC (presente en la marihuana y actúa sobre el sistema nervioso central) estimula la sobreproducción de dopamina, una hormona responsable del placer que se produce naturalmente ante acciones como comer o tener sexo.
Países de la CEI dejarán de usar el dólar en 2025
Roberto Moreno desmiente despido del Sistema Nacional Anticorrupción
Congreso exige informe al alcalde de BJ por abusos en operativo
Seguridad vial en crisis: urgen financiamiento para reducir accidentes
En 2025 habrá cinco olas de calor, pronostica SMN
Israel intensifica operativos en Cisjordania tras 'atentado'
Escrito por Romeo Pérez
Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.