La forma en que pensamos y sentimos está determinada por la interacción entre el cuerpo y el cerebro.
Cargando, por favor espere...
Cavalieri y Torricelli, ambos discípulos de Galileo, hicieron aportaciones significativas al cálculo infinitesimal. El primero desarrolló el método de los indivisibles, una herramienta matemática que sirvió para calcular: 1) el área de figuras planas por medio de suma de infinitos segmentos paralelos a la base y 2) volumen de sólidos por medio de suma de infinitas superficies planas paralelas a la base. Esta forma ingeniosa de encontrar áreas y volúmenes por Cavalieri fue retomada en el Siglo XIX por el matemático alemán Bernhard Riemann para expresar la integral por medio del límite de su suma, conocida hoy como suma de Riemann.
El método de los indivisibles creado por Cavalieri le permitió encontrar el área existente entre un triángulo parabólico y el volumen de una pirámide. Además, pudo encontrar de manera precisa áreas bajo curvas de tipo parabólico, cúbico hasta curvas de grado nueve con el uso de la fórmula , s=1, 2, 3,…,9 y
, proporcionado por él. Fórmula que se generalizaría después con los matemáticos franceses Fermat, Pascal y Roberval para el cálculo de áreas de curvas de tipo y=xn, con n en el conjunto de los números naturales.
El segundo italiano es reconocido por el uso de series convergentes y divergentes para el cálculo del volumen de un sólido de revolución, conocido como trompeta de Torricelli. Este sólido cumple con la característica de que el área de su superficie es infinita, pero su volumen finito. Para simplificar, considérese la curva xy=1. Es inmediato notar que tanto el área bajo la curva y=1/x como el área de la superficie de revolución obtenida al girar dicha curva alrededor del eje X es infinita, pero el volumen de sólido de revolución es finito. Para demostrar esta afirmación tómese como integrandos, respectivamente, las funciones y=1/x y y=/x^2 e intégrese en el intervalo ,. Desde luego que Torricelli no usó el cálculo integral como la conocemos hoy, pues esta herramienta matemática surgiría después con Leibniz y Newton. Las herramientas usadas por Torricelli fueron las series y el método de los indivisibles proporcionado ya por Cavalieri. Para ello, Torricelli inscribió infinitos cilindros en la trompeta, uno dentro del otro para cada x en el eje de las abscisas. Es claro que el volumen de cada cilindro inscrito iba disminuyendo conforme el valor de x crecía hacia el infinito. Para encontrar el volumen de los cilindros, Torricelli recurrió al método de los indivisibles de Cavalieri. Luego usó las series para sumar los volúmenes de los diferentes cilindros y demostró que la serie convergía, es decir, el volumen era finito. La serie resulta convergente, debido a que el volumen de la trompeta de Torricelli es acotado por arriba por la suma de los volúmenes de los cilindros de altura unidad. Por lo tanto, si acotamos el volumen de los cilindros de radio 1/x, con x=1, 2, 3,…, n, … y altura unidad, el resultado se sigue inmediatamente. En efecto, el volumen resultó ser menos estricto que la serie de los inversos de los cuadrados, la cual ya se sabía que convergía, pues es posible acotarla superiormente por una serie telescópica, la cual desde luego era convergente. Así fue como Torricelli demostró que el volumen de la trompeta que lleva su nombre era finito y menor a 2 π. Para demostrar la infinitud del área de la superficie, Torricelli nuevamente recurrió a las series, esta vez demostró que el área de la superficie era mayor que la serie armónica estudiada ya por Nicolás de Oresme (mediados del Siglo XIV), la cual es divergente. Por lo tanto, al ser el área de la superficie mayor que la serie armónica, resulta ser infinita.
Surge aquí la pregunta de todos, ¿existirá un sólido cuyo volumen sea infinito, pero el área de su superficie sea finita? La respuesta es no. No existe un sólido con esas características. La demostración la proporcionaré en mi siguiente colaboración.
Cavalieri y Torricelli pudieron usar las series convergentes y divergentes gracias al desarrollado concepto del infinito adquirido ya en aquella época en los trabajos de Pietro Mengoli sobre la serie telescópica y de Nicolás de Oresme sobre la serie armónica.
La forma en que pensamos y sentimos está determinada por la interacción entre el cuerpo y el cerebro.
Cuando se aborda el tema de la Inteligencia artificial (IA), a diferencia de algunas décadas atrás en el tiempo, ya no se aborda como ciencia-ficción; ahora la IA es una realidad.
La empresa mexicana ThumbSat diseñó y construyó los satélites en tamaño reducido (de 100 gramos cada uno aproximadamente).
La compañía tecnológica informó a medios especializados que los datos comprometidos incluyen información general, como nombres de usuarios y empresas, pero no contraseñas.
Los resultados mostraron un incremento de 38.3 a 42.6 por ciento los pacientes con afecciones intestinales y cerebrales en 2017 y 2023 respectivamente.
En su Segunda Carta de Relación dice que “la dicha provincia es redonda y está toda cercada de muy altas y ásperas sierras, y lo llano de ella tendrá en torno hasta setenta leguas”.
El vicepresidente brasileño, Geraldo Alckmin, visitará México a finales de agosto, acompañado por ministros y empresarios.
El estudio muestra que las diferencias en la superficie de la Luna están relacionadas con su interior y ha creado el mapa más preciso de su gravedad hasta ahora.
A lo largo de la historia, las dos guerras mundiales han dado lugar a los mayores ecocidios.
El estudio sugiere que los avances científicos están diseñados para monitorear a personas, lo que podría beneficiar a la industria de la vigilancia.
Enjambres de terremotos se incrementan a finales del verano, tras la filtración del agua de deshielo, y disminuyen en primavera.
El mini robot imita con precisión la anatomía de un insecto real.
El desarrollo de la sociedad ha engendrado diversas clases sociales.
Los investigadores calificaron este caso como “una de las mayores filtraciones de datos de la historia”.
Genera hasta 50 escenarios posibles con una antelación de hasta 15 días.
Anuncian cierre de estaciones del Metro, Línea 1, en septiembre
Último día para reemplacamiento en Edomex 2025, evita sanciones
“México debe oponerse al hegemonismo y distorsión de la historia”: embajador chino
Suspenden transportistas megamarcha del 1 de septiembre
Anuncia FNERRR movilización cultural por albergues estudiantiles en Oaxaca
Alerta por tormentas; frente frío azotará con más lluvias fuertes a estas entidades
Escrito por Romeo Pérez
Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.