Cargando, por favor espere...

Cálculo infinitesimal por Cavalieri y Torricelli
Cavalieri y Torricelli, matemáticos que hicieron historia en su tiempo.
Cargando...

Cavalieri y Torricelli, ambos discípulos de Galileo, hicieron aportaciones significativas al cálculo infinitesimal. El primero desarrolló el método de los indivisibles, una herramienta matemática que sirvió para calcular: 1) el área de figuras planas por medio de suma de infinitos segmentos paralelos a la base y 2) volumen de sólidos por medio de suma de infinitas superficies planas paralelas a la base. Esta forma ingeniosa de encontrar áreas y volúmenes por Cavalieri fue retomada en el Siglo XIX por el matemático alemán Bernhard Riemann para expresar la integral por medio del límite de su suma, conocida hoy como suma de Riemann.

El método de los indivisibles creado por Cavalieri le permitió encontrar el área existente entre un triángulo parabólico y el volumen de una pirámide. Además, pudo encontrar de manera precisa áreas bajo curvas de tipo parabólico, cúbico hasta curvas de grado nueve con el uso de la fórmula , s=1, 2, 3,…,9 y , proporcionado por él. Fórmula que se generalizaría después con los matemáticos franceses Fermat, Pascal y Roberval para el cálculo de áreas de curvas de tipo y=xn, con n en el conjunto de los números naturales.

El segundo italiano es reconocido por el uso de series convergentes y divergentes para el cálculo del volumen de un sólido de revolución, conocido como trompeta de Torricelli. Este sólido cumple con la característica de que el área de su superficie es infinita, pero su volumen finito. Para simplificar, considérese la curva xy=1. Es inmediato notar que tanto el área bajo la curva y=1/x como el área de la superficie de revolución obtenida al girar dicha curva alrededor del eje X es infinita, pero el volumen de sólido de revolución es finito. Para demostrar esta afirmación tómese como integrandos, respectivamente, las funciones y=1/x y y=/x^2 e intégrese en el intervalo ,. Desde luego que Torricelli no usó el cálculo integral como la conocemos hoy, pues esta herramienta matemática surgiría después con Leibniz y Newton. Las herramientas usadas por Torricelli fueron las series y el método de los indivisibles proporcionado ya por Cavalieri. Para ello, Torricelli inscribió infinitos cilindros en la trompeta, uno dentro del otro para cada x en el eje de las abscisas. Es claro que el volumen de cada cilindro inscrito iba disminuyendo conforme el valor de x crecía hacia el infinito. Para encontrar el volumen de los cilindros, Torricelli recurrió al método de los indivisibles de Cavalieri. Luego usó las series para sumar los volúmenes de los diferentes cilindros y demostró que la serie convergía, es decir, el volumen era finito. La serie resulta convergente, debido a que el volumen de la trompeta de Torricelli es acotado por arriba por la suma de los volúmenes de los cilindros de altura unidad. Por lo tanto, si acotamos el volumen de los cilindros de radio 1/x, con x=1, 2, 3,…, n, … y altura unidad, el resultado se sigue inmediatamente. En efecto, el volumen resultó ser menos estricto que la serie de los inversos de los cuadrados, la cual ya se sabía que convergía, pues es posible acotarla superiormente por una serie telescópica, la cual desde luego era convergente. Así fue como Torricelli demostró que el volumen de la trompeta que lleva su nombre era finito y menor a 2 π. Para demostrar la infinitud del área de la superficie, Torricelli nuevamente recurrió a las series, esta vez demostró que el área de la superficie era mayor que la serie armónica estudiada ya por Nicolás de Oresme (mediados del Siglo XIV), la cual es divergente. Por lo tanto, al ser el área de la superficie mayor que la serie armónica, resulta ser infinita.

Surge aquí la pregunta de todos, ¿existirá un sólido cuyo volumen sea infinito, pero el área de su superficie sea finita? La respuesta es no. No existe un sólido con esas características. La demostración la proporcionaré en mi siguiente colaboración.

Cavalieri y Torricelli pudieron usar las series convergentes y divergentes gracias al desarrollado concepto del infinito adquirido ya en aquella época en los trabajos de Pietro Mengoli sobre la serie telescópica y de Nicolás de Oresme sobre la serie armónica.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

“Aproximadamente el 70 por ciento de los cinco mil 200 millones de hectáreas de tierras secas que se utilizan en agricultura o ganadería está degradada y amenazada por la desertificación”.

La educación universitaria es un paso indispensable para el desarrollo científico y tecnológico.

Una consecuencia sorprendente del resultado BanachTarski, es demostrar que se puede particionar una bola del tamaño de la tierra, reordenar esta partición y obtener una bola del tamaño del sol.

Según un informe, un mexicano revisa su celular, en promedio, 142 veces y pasa más de 18 horas y 12 minutos a la semana en su pantalla.

El Centro Nacional de Investigaciones Científicas (CNRS) francés sostuvo que en plena selva amazónica descubrió una “extensa red de ciudades de dos mil 500 años de antigüedad”.

La vida de Henrik fue marcada por la pobreza, la fatalidad y la incomprensión; aun así, su mentalidad matemática, lo llevó a mostrar su genialidad, con ideas originales, mostrando caminos nuevos a los matemáticos de su época.

Para Pitágoras, el conocimiento no se agota con lo empírico, porque su esencia está en el segundo, se encuentra donde está el número, concebido como una relación abstracta (no de cálculo).

“Estamos ante la presencia del gobierno que intenta ver como accidentes, lo que más bien han sido tragedias provocadas por la ausencia de mantenimiento”, denunció Andrés Atayde, presidente del PAN.

Einstein hizo lo mismo con la estructura del universo donde habitamos, al demostrar que es también un espacio curvo.

Debido a la decisión del gobierno de la “Cuarta Transformación” (4T), de recortar presupuesto al sector de la ciencia, el Gran Telescopio Milimétrico (GTM) corre peligro de dejar de funcionar a partir del primero de septiembre.

Es considerado el más prolífico de los matemáticos; su nombre figura en fórmulas, teoremas, números, integrales y constantes en distintas ramas de la matemática.

China espera convertirse en la tercera nación en lograr esta hazaña, que requiere un operativo extremadamente complejo.

Pareciera contraintuitivo que alguien haga su vida al lado de grandes montañas que sacan humo y fuego, sin embargo, ese material que sacan por sus chimeneas hace que los suelos que los rodean sean fértiles...

Cavalieri y Torricelli, matemáticos que hicieron historia en su tiempo.

Queda claro que AMLO tiene un desconocimiento abismal acerca de la relación entre la ciencia y la política.