Cargando, por favor espere...
Dos herramientas matemáticas de demostración fueron constantes en las obras de Arquímedes: el método exhaustivo, establecido por Eudoxo de Cnido, y el método por reducción al absurdo, formalizado por él mismo. Ambos métodos fueron usados por él; en primer lugar, para calcular áreas del círculo de radio uno, del segmento parabólico y de la espiral que lleva su nombre y, en segundo lugar, para encontrar volúmenes de segmentos de “conoide rectángulo” (paraboloide de revolución), de “conoide obtusángulo” (hiperboloide de revolución) y de esferoide (elipsoide de revolución).
Thomas Little Heath, en su libro The works of Archimedes (págs. 99-188), recoge los trabajos Sobre los conoides y esferoides y Sobre las espirales del sabio de Siracusa. De estas dos obras, me interesa particularmente destacar el trabajo Sobre las espirales, porque, en esta aportación matemática, se vislumbra ya la síntesis del cálculo integral y diferencial. Arquímedes comienza construyendo su espiral partiendo de un punto que se mueve sobre una recta a una velocidad uniforme, recta que gira sobre un punto fijo (origen) con una velocidad angular uniforme.
Para continuar con su investigación, el genio de Siracusa demuestra que el área de dicha espiral, en su primera vuelta, cubre la tercera parte del círculo que la envuelve. La solución a esta afirmación trajo consigo la respuesta a uno de los tres problemas clásicos de la Grecia antigua, el problema de la trisección del ángulo que, con la cuadratura del círculo y la duplicación del cubo, habían resistido los embates de los más eminentes matemáticos griegos.
La espiral de Arquímedes, que “evoca el infinito” y “triseca” ángulos, concentra el cálculo infinitesimal muy desarrollado para su tiempo. Un ejemplo de esta concentración se encuentra en la siguiente proposición: “el área acotada por la primera vuelta de la espiral y la línea inicial es igual a la tercera parte del primer círculo (que la envuelve)” (Proposición 24, pág. 178).
Hoy la ecuación de dicha espiral se puede expresar en coordenadas polares de la forma r (θ)=aθ, donde r es la distancia al origen, a es una constante y θ es el ángulo girado. Se requiere encontrar el área de la espiral cuando el ángulo polar varía de 0 a 2π en relación con el área del círculo circunscrito de radio 2πa. Es inmediato calcular el área de este círculo por medio de la fórmula πr2 = π (2π a)2 y de la espiral, por medio de la integral en coordenadas polares, tomando como integrando la función polar r2/2 en el intervalo [0, 2π]. Usando algunas operaciones básicas de la integral, obtenemos en seguida que π (2π a)2/3, corresponde al área de la espiral, la cual es la tercera parte del primer círculo que la circunscribe. Esta maquinaria matemática, sin embargo, no existía en aquellos tiempos, por eso Arquímedes procede de la siguiente manera: divide el círculo de radio 2π a en sectores de amplitud θ=2π /n; con n en los números naturales. Luego, en cada sector circular, examina el arco de la espiral que queda dentro del mismo sector y acota el área correspondiente a dicho arco de la espiral entre las áreas de dos sectores circulares. Posteriormente calcula el área del sector circular más grande inscrito en cada arco de la espiral y el área del sector circular más pequeño circunscrito a cada arco de la espiral, y por medio del método exhaustivo va cubriendo progresivamente la espiral con cada sector circular inscrito y circunscrito tantas veces como se quiera. Después, suma el área de todos lo sectores circulares más grandes inscritos en cada arco de la espiral y el área de todos los sectores circulares más pequeños circunscritos a cada arco. Finalmente, Arquímedes aplica dos veces el método por reducción al absurdo para comprobar la veracidad de la Proposición 24 de su libro Sobre las espirales.
Con esta aportación, Arquímedes se había adelantado a los matemáticos de mediados y último tercio del Siglo XVII como Cavalieri, Pascal, Newton y Bernoulli, quienes usaron formalmente las coordenadas polares para resolver problemas relativos a áreas, longitud de arcos parabólicos y tangentes respectivamente.
Von Neumann fue considerado como superdotado, ya que desde los seis años ya sabía dividir, hablar griego antiguo, francés, alemán y latín, y a sus ocho años ya dominaba el cálculo diferencial e integral.
Así como un deportista ama su actividad, lo encuentra entretenido, le gusta y goza, de igual manera un matemático, con sus objetos de estudio, ama intrínsecamente la disciplina, muchas veces sin esperar utilidad.
Con sus ataques a las instituciones educativas y culturales, López Obrador pretende eliminar el pensamiento crítico, una actitud retrógrada muy parecida a la que hace varios siglos desembocó en el asesinato de judíos en la primera mitad del Siglo XX.
En las siguientes líneas podrán leer sobre el olivo, una de las plantas más representativas que se mencionan en La Biblia. Su primera mención aparece durante el Génesis 8:11.
En la ruleta los resultados son equiprobables, no hay predilección por ningún número o color.
¿Cómo producir frutas y verduras sin químicos que dañen nuestra salud y la de las demás especies de seres vivos? Recientemente encontré el libro "Regénesis. Alimentar al mundo sin devorar el planeta", de George Monbiot.
La situación que enfrentan los tabasqueños es complicada y de alto riesgo. Urge implementar programas de desinfección.
Se trata de "una zona que está cubierta con nieve 10 meses al año, de difícil acceso por la altura y geografía que ostenta una tupida vegetación y bosque valdiviano".
Otras mujeres matemáticas también fueron importantes en la antigua Grecia; por ejemplo Aspacia de Alejandría (470-410 a. C.), pareja de Pericles.
Este primero de diciembre, después de medio día, se esperan apagones en señales de radio y GPS; así como en teléfonos celulares y el internet, esto luego de que una tormenta solar denominada “Caníbal” golpee nuestro planeta.
Las matemáticas dieron orden al caos. Dan certeza en el momento que se vive y ayudan a comprender y medir los fenómenos que rodean a las personas.
México, país extraordinariamente rico en diversidad biológica, alberga formaciones importantes de microbialitos
Es considerado el más prolífico de los matemáticos; su nombre figura en fórmulas, teoremas, números, integrales y constantes en distintas ramas de la matemática.
Los nuevos ambientes activan en nuestro organismo la producción de dopamina, sustancia que promueve el aprendizaje asociativo.
Hay quien dice que algo o está vivo o está muerto; sin embargo, todo lo que empieza a vivir comienza a morir al mismo tiempo y todo lo inerte es germen de la vida, porque al final, la vida también es materia...
Trump confirma que sí impondrá aranceles del 25% a productos mexicanos
Hermana de Martí Batres y Morena buscan legalizar despojos en CDMX
¡Arancel Vs Arancel! Trudeau promete contramedidas
México presente en Foro Económico Mundial de Davos 2025
Desplazados de San Pedro El Alto, entre una crisis humanitaria y el desdén del gobernador
Inicia deportación migratoria tras decreto de Trump
Escrito por Romeo Pérez
Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.