Cargando, por favor espere...
Dos herramientas matemáticas de demostración fueron constantes en las obras de Arquímedes: el método exhaustivo, establecido por Eudoxo de Cnido, y el método por reducción al absurdo, formalizado por él mismo. Ambos métodos fueron usados por él; en primer lugar, para calcular áreas del círculo de radio uno, del segmento parabólico y de la espiral que lleva su nombre y, en segundo lugar, para encontrar volúmenes de segmentos de “conoide rectángulo” (paraboloide de revolución), de “conoide obtusángulo” (hiperboloide de revolución) y de esferoide (elipsoide de revolución).
Thomas Little Heath, en su libro The works of Archimedes (págs. 99-188), recoge los trabajos Sobre los conoides y esferoides y Sobre las espirales del sabio de Siracusa. De estas dos obras, me interesa particularmente destacar el trabajo Sobre las espirales, porque, en esta aportación matemática, se vislumbra ya la síntesis del cálculo integral y diferencial. Arquímedes comienza construyendo su espiral partiendo de un punto que se mueve sobre una recta a una velocidad uniforme, recta que gira sobre un punto fijo (origen) con una velocidad angular uniforme.
Para continuar con su investigación, el genio de Siracusa demuestra que el área de dicha espiral, en su primera vuelta, cubre la tercera parte del círculo que la envuelve. La solución a esta afirmación trajo consigo la respuesta a uno de los tres problemas clásicos de la Grecia antigua, el problema de la trisección del ángulo que, con la cuadratura del círculo y la duplicación del cubo, habían resistido los embates de los más eminentes matemáticos griegos.
La espiral de Arquímedes, que “evoca el infinito” y “triseca” ángulos, concentra el cálculo infinitesimal muy desarrollado para su tiempo. Un ejemplo de esta concentración se encuentra en la siguiente proposición: “el área acotada por la primera vuelta de la espiral y la línea inicial es igual a la tercera parte del primer círculo (que la envuelve)” (Proposición 24, pág. 178).
Hoy la ecuación de dicha espiral se puede expresar en coordenadas polares de la forma r (θ)=aθ, donde r es la distancia al origen, a es una constante y θ es el ángulo girado. Se requiere encontrar el área de la espiral cuando el ángulo polar varía de 0 a 2π en relación con el área del círculo circunscrito de radio 2πa. Es inmediato calcular el área de este círculo por medio de la fórmula πr2 = π (2π a)2 y de la espiral, por medio de la integral en coordenadas polares, tomando como integrando la función polar r2/2 en el intervalo [0, 2π]. Usando algunas operaciones básicas de la integral, obtenemos en seguida que π (2π a)2/3, corresponde al área de la espiral, la cual es la tercera parte del primer círculo que la circunscribe. Esta maquinaria matemática, sin embargo, no existía en aquellos tiempos, por eso Arquímedes procede de la siguiente manera: divide el círculo de radio 2π a en sectores de amplitud θ=2π /n; con n en los números naturales. Luego, en cada sector circular, examina el arco de la espiral que queda dentro del mismo sector y acota el área correspondiente a dicho arco de la espiral entre las áreas de dos sectores circulares. Posteriormente calcula el área del sector circular más grande inscrito en cada arco de la espiral y el área del sector circular más pequeño circunscrito a cada arco de la espiral, y por medio del método exhaustivo va cubriendo progresivamente la espiral con cada sector circular inscrito y circunscrito tantas veces como se quiera. Después, suma el área de todos lo sectores circulares más grandes inscritos en cada arco de la espiral y el área de todos los sectores circulares más pequeños circunscritos a cada arco. Finalmente, Arquímedes aplica dos veces el método por reducción al absurdo para comprobar la veracidad de la Proposición 24 de su libro Sobre las espirales.
Con esta aportación, Arquímedes se había adelantado a los matemáticos de mediados y último tercio del Siglo XVII como Cavalieri, Pascal, Newton y Bernoulli, quienes usaron formalmente las coordenadas polares para resolver problemas relativos a áreas, longitud de arcos parabólicos y tangentes respectivamente.
Creer que las verdades matemáticas y objetos matemáticos tienen existencia independiente de la mente humana no tiene fundamento; desde Pitágoras hasta algunos matemáticos más contemporáneos creen en esta independencia.
Las edificaciones no están diseñadas para enfrentar el "peligro silencioso" que las acecha desde el subsuelo, advierten ingenieros de la Universidad Northwestern (EE.UU.)
La participación de las mujeres en el desarrollo de las matemáticas ha sido escasa, comparada con la de los hombres
El pueblo demanda salud, obra de 1951, es una de las pinturas que Diego Rivera plasmó que, además de centrarse en temas sociales y políticos, también se hizo alusión a la ciencia.
Cavalieri y Torricelli, matemáticos que hicieron historia en su tiempo.
Charles convence a su hija de que acepte los títulos al portador de una empresa “fantasma”, quien está controlada por Mossack y Fonseca
Los métodos proporcionados por Eudoxo y Arquímedes, hace más de dos mil años, son usados hoy para calcular áreas con cualquier tipo de curvas y volúmenes.
Por la relación comercial que tiene México con Estados Unidos, el 53.85 por ciento del café que se exporta de nuestro país tiene como destino Estados Unidos.
La realidad es más compleja de lo que la ciencia sabe de ella y nos damos cuenta.
El famoso Axioma de elección juega un poco con la intuición humana, ya que demuestra que todo conjunto puede ser bien ordenado, aunque no se muestra cuál es ese orden.
¿Alguna vez te has preguntado por qué el cempasúchil tiene ese aroma tan característico? Detrás de su belleza se esconde una historia que explora los compuestos responsables de la “experiencia multisensorial” que ofrece esta flor.
Para muchos, un trasplante es su única opción para salvarse ante enfermedades como cirrosis hepática, enfermedad pulmonar obstructiva crónica, leucemia, entre muchas otras. No obstante, es necesaria la existencia de donantes.
La embriogénesis somática, una técnica biotecnológica, permite reducir los tiempos en que las plantas crecen o la susceptibilidad a contraer enfermedades, permitiendo una mayor producción en el campo.
La proteína es un macronutriente indispensable para el crecimiento y el mantenimiento de órganos y músculos en el cuerpo de los animales.
“Estamos cerca de crear lo que se llama oncovacunas, vacunas contra el cáncer y medicamentos inmunomoduladores de nueva generación", afirmó el presidente de Rusia, Vladimir Putin.
Oaxaca de Juárez, dos años sin relleno sanitario
OMS aprueba nueva vacuna de mpox en niños
Rusia lanza misil balístico sin carga nuclear contra Ucrania
Denuncia Coordinadora Territorial del Pueblo de Mixquic acoso y violencia política
Frente Cívico Nacional definirá ruta para nuevo partido político
Aumenta trabajo infantil informal en el Centro Histórico de CDMX
Escrito por Romeo Pérez
Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.