Cargando, por favor espere...
La cuadratura de una figura geométrica consiste en encontrar exactamente su área en un cuadrado. Por ejemplo, en la Grecia antigua, usando solamente regla (no graduada) y compás se buscó incansablemente cuadrar un círculo dado. El problema se resolvió muchos siglos después, en 1882, con el matemático alemán Ferdinand Lindemann, quien al demostrar que π era un número trascendente, dejó de manifiesto que la cuadratura del círculo por medio de regla y compás, era imposible. De manera similar, para la “cubatura” de una esfera, se busca que un cubo tenga el mismo volumen que la esfera. Ambos términos fueron usados por Cavalieri y Kepler, matemáticos de principios del Siglo XVII, para calcular áreas de figuras planas y volúmenes de cuerpos geométricos. Con la ayuda de los métodos por agotamiento y reducción al absurdo, proporcionados, respectivamente, por Eudoxo de Cnido y Arquímedes de Siracusa, y al incorporar cortes transversales y circulares a sus investigaciones, Kepler y Cavalieri generalizaron y simplificaron el cálculo de áreas de figuras planas como círculos y parábolas y volumen de sólidos como prismas, pirámides, esferas, cilindros y conos. Kepler, por ejemplo, desarrolló la teoría infinitesimal al calcular la cantidad de litros que contenía un barril de vino que le habían vendido para su nuptiae secundae. No estando de acuerdo con el mercader por el método usado por éste para medir el volumen del vino contenido en el barril, él mismo proporcionó un método para volúmenes de diferentes cuerpos de revolución. El volumen de más de 90 sólidos calculados por el astrónomo alemán pueden estudiarse en su obra Nova Stereometria doliorum vinariorum (Nueva geometría sólida de los barriles de vino).
Por su parte, en su obra Geometria indivisibilibus continuorum nova quadam ratione promota (Geometría de los continuos por indivisibles presentada por nuevos métodos), Cavalieri expone magistralmente su método de los indivisibles para calcular volúmenes de diferentes cuerpos geométricos: “Si dos sólidos tienen las alturas iguales y si las secciones hechas por planos paralelos a las bases a la misma distancia de la base están en una determinada proporción, entonces los volúmenes de los sólidos están también en esa proporción”. Cavalieri considera las figuras planas como un conjunto infinito de segmentos de rectas paralelas y a los sólidos como un conjunto infinito de figuras planas paralelas. Estas dos consideraciones junto con el método infinitesimal hicieron posible el cálculo de volúmenes de prismas, pirámides, esferas, cilindros y conos.
A manera de ejemplo, consideremos el volumen de un prisma rectangular recto (V.P.) conocido. Recordemos que la fórmula para calcular su volumen es: área de la base por su altura (AxH), que se usa como medida para calcular el área de otros cuerpos geométricos como el de un cilindro oblícuo (V.C.), de base circular. Ambos cuerpos se colocan uno frente al otro, sus respectivas bases puestas en el mismo plano, con alturas iguales y cumplen la condición de que los planos paralelos, a la base, colocados a la misma distancia de la base tienen una determinada proporción, entonces el volumen del cilindro es calculado. En efecto, (V.P.)/(V.C.)=(AxH)/(V.C.)=A/πr^2, despejando V.C. de la última igualdad se encuentra que V.C.= π
r^2H, el cual es el volumen del cilindro. De forma similar se puede calcular el volumen de cualquier prisma, pirámide triangular, cono circular, esfera, etc., (para más detalle consúltese el artículo: los indivisibles de Cavalieri: una perspectiva plausible para el aprendizaje del cálculo de volúmenes, del doctor investigador del Cinvestav Gonzalo Zubieta Badillo).
El matemático italiano publicó 10 libros de matemáticas. Sin embargo, las obras que más influyeron fueron la Geometria indivisibilibus continuorum nova quadam ratione promota y Seis ejercicios geométricos, publicadas, respectivamente, en 1635 y 1647. La mayor parte de los trabajos escritos por Cavalieri trata sobre los problemas de cuadraturas y cubaturas.
Al igual que Euclides de Alejandría, aunque no proporciona definición alguna, Cavalieri considera a los puntos como los indivisibles de las líneas, las líneas como los indivisibles de las figuras planas, y las secciones planas como los indivisibles de los sólidos. Estos elementos constituyentes de las figuras planas y sólidos fueron fundamentales para que Cavalieri comparara y dedujera de áreas y volúmenes conocidos, área y volumen de nuevos cuerpos geométricos.
"Hemos visto con nuestros ojos y sentido bajo nuestros pies cómo muere el Ártico", explicó en declaraciones a la televisión pública ARD el jefe de la expedición, Markus Rex.
La gran pasión científica de Pierre Laplace era establecer matemáticamente la estabilidad de nuestro sistema solar; para ello, se propuso aplicar las leyes de la gravitación de Newton y explicar ciertas perturbaciones observadas en Saturno y Júpiter cuand
A pesar de todas las riquezas que posee África (y que aquí menciono), la gran mayoría de la población vive una situación muy deplorable, lo que representa una gran contradicción.
Para describir el comportamiento de los fenómenos físicos, biológicos, químicos, sociales o económicos, el hombre recurre, en la mayoría de los casos, a modelos matemáticos para ayudarse a resolver dos tipos de problemas.
Un grupo de científicos reveló que el papiro narra la “vivificación de los gorriones”.
Monitorear la evolución del rendimiento deportivo de los atletas a lo largo de las fases de preparación para una competencia es un tema que ha tomado relevancia en los últimos años, sin embargo, no todos los deportistas tienen las herramientas necesarias para realizarla con eficacia.
Por primera vez en el mundo, científicos de Siberia lograron curar del cáncer a gatos y perros a través de una terapia basada en la captura de neutrones por el boro.
El papel de la ciencia en el desarrollo social se piensa en sus aportaciones a la tecnología para elevar la productividad, generar riqueza, crecimiento económico y progreso.
El científico Alejandro Macías alertó que en cuanto entre a México la variante JN.1, denominada Pirola, lo hará con tal fuerza que podrá haber saturación de hospitales y de camas de terapia intensiva.
La importancia de su trabajo científico radicó en que se adelantaron a predecir lo que pasaría antes de la completa destrucción de la capa de ozono (O3).
Si queremos evitar dañar irremediablemente nuestra vista mientras observamos el eclipse de este 8 de abril, hay que hacerlo siempre con los filtros adecuados. Te decimos cómo.
La irracionalidad ayuda al hombre a comprender la continuidad y la discontinuidad de la materia.
La idea de aprender sin esfuerzo hace que el conocimiento adquirido en los menores sea volátil, superficial, en desmedro de su capacidad intelectual; y preocupa que cada año el nivel académico e intelectual de niños y jóvenes está decayendo a sitios alarmantes.
Estableció formalmente la continuidad de la recta real, definiendo un número real por medio de un dispositivo llamado cortadura.
El Cometa Diablo, compuesto de criomagma, una amalgama de hielo, polvo y gas, presenta una estructura peculiar.
Cutzamala alcanza cifra récord gracias a constantes lluvias en CDMX y Edomex
Cuatro ciudades de México dentro de las menos habitables de América Latina
Fernández Noroña tiene a asistentes con sueldo fuera de nómina
Presentan propuesta para cambiar impuesto al alcohol
Del Monte entra en bancarrota: ¿Qué impacto habrá en México?
Fosa clandestina en Veracruz: ahí hallaron a la maestra Irma Hernández
Escrito por Romeo Pérez
Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.