Cargando, por favor espere...
En la actualidad, la neurociencia está intentando explicar los enigmas de la mente humana, ¿por qué algunas personas pueden comprender el formalismo matemático con más facilidad que otras?, ¿por qué a algunas personas les fluyen ideas matemáticas con mayor facilidad, y a otras no? Son algunas de las preguntas para las que no hay una respuesta científicamente aceptada. Cómo podemos explicar la mente de un moribundo enfermo que el escuchar el número 1729 diga: “es el menor entero que puede ser expresado de dos maneras distintas como suma de dos números elevados al cuadrado” (cosa que es real: 1729 = 13+ 123= 93+ 103). Esta increíble y extraordinaria mente perteneció a uno de los personajes más enigmáticos en la Historia de la Matemática, se trata del indio Srinivasa Ramanujan, quien nació el 22 de diciembre de 1887 en Erode, provincia de Madrás, en el seno de una familia de extrema pobreza.
Su extraordinario talento lo llevó, en la secundaria, a recibir el premio K. Rangantha Rao. Sin título universitario, empezó a buscar trabajo a la vez que realizaba sus investigaciones, sin una educación formal en matemáticas, pero con un talento extraordinario, capaz de captar de manera intuitiva e inductiva las estructuras subyacentes de los números, descubriendo formulas y algoritmos que estaban por encima de la compresión de la mayoría de matemáticos de su época. Sus descubrimientos carecían del rigor actual, sin embargo, contenían patrones y simetrías en series numéricas extraordinarias. Su primera publicación la hizo en la Revista de la Sociedad Matemática de La India, en donde descubrió que las fracciones de los números de Bernoulli eran siempre divisibles por seis y otros resultados más.
Después de muchos intentos de contactar a matemáticos europeos para que vieran y evaluaran su trabajo, sin mayor respuesta o con alguna respuesta que solo hacía referencia a su falta de rigor matemático, el 16 de enero de 1913 decidió escribir a uno de los matemáticos más famosos de Europa, el inglés Godfrey Hardy (1877 – 1947), quien al revisar las primeras páginas del escrito expresó: “estas fórmulas me derrotaron completamente. Yo no he visto antes nada de esto. Una simple mirada resulta suficiente para darse cuenta de que solamente las podría haber escrito un matemático de primera clase. Deben ser verdad, porque nadie puede tener la imaginación suficiente para inventárselas”.
Desde ese momento se propuso traer a Ramanujan a Inglaterra. Después de una inicial negativa, finalmente aceptó viajar a la Inglaterra, el 17 de marzo de 1914. Bajo la protección académica del profesor Hardy, se inició una fructífera e histórica colaboración. Hardy y Ramanujan eran personajes distintos, Hardy era ateo y Ramanujan profundamente religioso, Hardy era escrupulosamente riguroso, mientras que Ramanujan era informal e intuitivo, ambos provenían de culturas completamente diferentes, sin embargo, los unía la pasión por la matemática: a pesar de las diferencias, el profesor Hardy sentía una profunda admiración por la mente privilegiada de Ramanujan y dijo en alguna ocasión: “llegaba a través de un proceso de argumentación mezclada de intuición y de inducción de la que fue enteramente incapaz de dar ninguna explicación coherente”. La mente de Ramanujan es un enigma científico y su producción matemática es estudiada hasta el día de hoy.
En los cinco años que Ramanujan estuvo en Cambridge, obtuvo logros importantes. En 1916 recibió su doctorado con la tesis Números altamente compuestos, que fue publicada en las Actas de la London Mathematical Society; en 1917 fue elegido miembro de la Sociedad Matemática de Londres; en 1918 fue nombrado miembro de la Royal Society por sus investigaciones en funciones elípticas y en Teoría de Números; en 1918 se convirtió en miembro del Trinity College. Todos estos méritos académicos no fueron suficientes para mejorar sus condiciones de vida, su comportamiento introvertido y extremadamente religioso no hizo posible su total integración a la cultura británica. Su alimentación, estrictamente vegetariana, y su pobre condición de vida, provocaron que enfermara gravemente de tuberculosis, obligándolo a regresar a Kumbakunam (La India) en 1919. Murió el 26 de abril de 1920 a los 32 años, el diagnóstico fue amebiasis hepática (infección generalizada al hígado). Sus últimas palabras fueron: “una ecuación para mí no tiene sentido a menos que represente un pensamiento de Dios”.
El capitalismo es el sistema económico dominante en el mundo.
Una empresa estadounidense pretende transportar gas natural licuado (GNL) a Asia, pero las políticas ecológicas estadounidenses le imponen varias restricciones.
Después de un mes repleto de celebraciones en el que la población adorna sus casas, hace regalos, convive y festeja, podemos preguntarnos: ¿cuál es el costo ambiental de las fiestas navideñas y de fin de año?
¿Es posible encontrar la cuadratura de una figura geométrica? la respuesta en este texto. La cuadratura de una figura geométrica consiste en encontrar exactamente su área en un cuadrado.
Quizá la principal causa de la escasa participación de las mujeres en la ciencia sean los estereotipos de género que imperan en la sociedad y que dictan que las mujeres no cuentan con la capacidad o el derecho para hacer investigación.
El pueblo demanda salud, obra de 1951, es una de las pinturas que Diego Rivera plasmó que, además de centrarse en temas sociales y políticos, también se hizo alusión a la ciencia.
El genio soviético fue quien lo hizo, en 1928, y, con éste, nació formalmente la probabilidad como la conocemos en la actualidad.
Investigadores del Instituto de Ingeniería (II) de la UNAM atribuyen la generación de microsismos en la CDMX a la falla sísmica denominada Plateros-Mixcoac localizada en la alcaldía Álvaro Obregón.
Una consecuencia sorprendente del resultado BanachTarski, es demostrar que se puede particionar una bola del tamaño de la tierra, reordenar esta partición y obtener una bola del tamaño del sol.
“El financiamiento es la columna vertebral de un sistema nacional de ciencia, tecnología e innovación. Desde aquí se aplican las políticas públicas, se incentiva o se corrige".
¿Alguna vez te has preguntado cómo es que podemos caminar, correr, pensar, sentir o platicar con otros? De todo eso se encargan las neuronas, su función es importantísima, aquí te cuento porqué y cómo funcionan.
A pesar del indiscutible rol que juegan los bosques, cada año disminuye su superficie debido al cambio de uso de suelo, tala clandestina e incendios forestales. De 2000 a 2018 se perdieron 13 mil 777 hectáreas.
Durante más de dos mil años el postulado de las paralelas, que formaba parte del cimiento de la geometría euclidiana, se mantuvo firme.
En la propuesta del Conacyt que ha circulado entre la comunidad, identificamos tres graves problemas: la confusión entre gobierno y Estado, la centralización de las decisiones y la falta de referencia al financiamiento estable.
La tortilla es rica en probióticos y prebióticos, y no contiene conservadores artificiales, lo que mejora su sabor.
Gran Guerra Patria, la fase más atroz de la lucha de clases bajo el Imperialismo
El legado político-moral de la victoria soviética sobre el nazifascismo
El Día de la Victoria Soviética
Robert Prevost es el nuevo papa; estas son sus primeras palabras
Línea B del Metro reanuda servicio tras falla en las vías
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador