Cargando, por favor espere...

Razón áurea y su implicación
Hoy sabemos que forma parte de los números irracionales y que es un número algebraico, al ser solución de una ecuación algebraica.
Cargando...

De acuerdo con la investigación efectuada por el matemático ruso Georg Cantor, los números irracionales son los más abundantes en la naturaleza matemática, por encima de los naturales, enteros y racionales. En la lista infinita de números irracionales se encuentra la razón áurea, una constante irracional que se obtiene a partir de la división proporcional de un segmento de la siguiente manera: suponga que tiene usted un segmento de longitud x. Divida este segmento en dos partes no iguales, en a y b donde, por ejemplo, a puede ser la mayor y b la menor. Si la proporción de la longitud a con relación a la longitud b es la misma que la existente entre x=a+b y a, entonces la línea x ha sido cortada en media y extrema razón; es decir, a/b=(a+b)/a=1+b/a. Ahora, haciendo s =a/b y, ejercitando un poco el cerebro con una operación aritmética, se tiene que s2-s-1=0. Al resolver esta ecuación cuadrática llegamos al siguiente resultado: . La solución positiva recibe el nombre de razón áurea, una razón que se obtiene también a partir de la sucesión de Fibonacci (1, 1, 2, 3, 5, 8, 13, 21, etc.) dividiendo cada número por su anterior.

Para estudiar el origen e historia de este número áureo, se recomienda el libro La proporción áurea, la historia del Phi, el número más sorprendente del mundo, escrito por el director de la División de Ciencias de Hubble Space Telescope Science Institute. El autor comienza la historia de la razón áurea, buscando patrones matemáticos usados en la construcción de las tumbas para los faraones egipcios y sumerios. Posteriormente, orienta su investigación hacia la arquitectura de las pirámides construidas por los ingenieros antiguos, hasta encontrar pruebas escritas en el tratado Los elementos, de Euclides, quien realizó un estudio formal del número áureo.

Euclides de Alejandría escribió en la definición tres del Libro VI : “una recta ha sido cortada en extrema y media razón, cuando la recta entera es al segmento mayor, como el segmento mayor es al segmento menor”. Esta afirmación es la misma que acabo yo de escribir más arriba. El mismo genio de Alejandría demostró, además, que la razón a/b no podía escribirse como razón de dos números enteros, es decir, no podía ser un número racional.     

Rápidamente, aquel número “divino” encontró utilidad en las actividades prácticas de los pintores, matemáticos y músicos. Por ejemplo, el pintor Alberto Durero usó esta razón para construir su espiral, conocido actualmente como espiral de Durero, que sirve para profundizar la investigación sobre las conchas, hileras de piñones en la piña, semillas de una flor de girasol, etc. El astrónomo Kepler, por su parte, usó la proporción áurea para desarrollar un modelo platónico del sistema solar. Se sabe que, con esa razón, el astrónomo alemán construyó su famoso triángulo conocido como triángulo de Kepler: “la relación entre los catetos y la hipotenusa es igual a la proporción áurea”. El compositor francés Achille-Claude Debussy usó esa razón para componer los 55 compases de la introducción del Tercer Movimiento de La Mer, Dialogue du vent et la mer (El mar, el diálogo del viento y el mar), entre otros compases compuestos por él.

Por la unicidad, inconmesurabilidad, etc., del número irracional Phi, el matemático italiano Luca Pacioli lo bautizó como “sección divina”. Este matemático y teólogo italiano planteó, en 1509, en su obra De Divina Proportione, que dicha proporción tenía carácter de divino porque cumplía fundamentalmente las siguientes razones: unicidad (unicidad de Dios), trinidad (por estar definida de tres segmentos a, b y a+b); inconmensurabilidad (por la inconmensurabilidad de Dios) y la autosimilaridad (por la omnipresencia e invariabilidad de Dios). Desde entonces, esta razón es conocida como sección o proporción divina o áurea.

La sección áurea, como usted, lector, acaba de notar, es un patrón abstraído de la naturaleza mediante la observación y el análisis del hombre hace cientos de años. Hoy sabemos que forma parte de los números irracionales y que es un número algebraico, al ser solución de una ecuación algebraica. Ya formalizada, encuentra aplicaciones en diferentes actividades del hombre como la pintura, música, arquitectura, etc., lo cual demuestra que el desarrollo del conocimiento es en espiral. 


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Noticia anterior
CÉSAR BRAÑAS
Noticia siguiente
El irlandés

Notas relacionadas

El récord del año más cálido pasó de 0.17 grados centígrados en 2016 a 14.98 grados centígrados en 2023.

La relación entre la ciencia y el dinero, entre la técnica y el negocio, ha sido ampliamente discutida por los grandes pensadores de la humanidad.

El desequilibrio hídrico ha dejado sin agua a casi 3 mil millones de personas alrededor del mundo

El cero, concebido como ausencia de cantidad, no existía en el mundo griego, puesto que no creían en el no ser; su presencia se vino a establecer muy paulatinamente.

Hoy más que nunca, es urgente y necesario rescatar la ciencia y practicarla, si no queremos regresar a la época del oscurantismo y el absolutismo.

El ser humano tiene la capacidad de obtener e interpretar la información que obtiene de su medio ambiente para generar una respuesta, en forma de movimiento.

Los primeros vestigios del conocimiento matemático de especies de Homo sapiens, capaces de establecer marcas en los huesos de animales para recordar hechos importantes, datan de hace 30 mil años.

Dotado de un extraordinario talento para estructurar conexiones, el alemán Alexander Grothendiek amplió las fronteras de la matemática contemporánea.

Si te gustan las matemáticas y te interesa conocer qué características debe tener un sistema de axiomas, aquí te detallo. Son tres: compatibilidad, independencia y completitud (idealmente).

La naturaleza es compleja y se manifiesta de muchas formas. Uno de los instrumentos para estudiar dichas formas es la geometría

Si las personas se pierden el eclipse solar que ocurrirá este 8 de abril, tendrán que esperar por lo menos 30 años para que este fenómeno vuelva a suceder con las mismas características.

El término “física térmica” causa curiosidad debido a que, en la división clásica de la física, no existe una rama como tal.

El chatbot DeepSeek apuesta por el “código abierto”, lo que implica bajos costos y alta eficiencia.

Estamos entrando en una crisis mundial de salud que, de no atenderse adecuada y prontamente, podría dirigirnos a una época en la que las personas morirán por infecciones microbianas.

El hallazgo sucedió en mayo de 2022 por el paleontólogo Damien Boschetto, quien observó en el borde de un acantilado derrumbado un hueso expuesto.