Cargando, por favor espere...

Matemática en el Siglo XVII
La matemática del Siglo XVIII se caracteriza por su falta de rigor, por carecer de un cuerpo teórico para hacer a las nuevas herramientas matemáticas más eficientes.
Cargando...

Fue Isaac Newton quien estableció un sistema que permitió establecer una base teórica que explicara el comportamiento de los fenómenos de la naturaleza. Esencialmente este sistema tomó como axiomas lo siguiente:

Los objetos estudiados por la física están constituidos por puntos-masa de materia.

Existe una instantánea acción a distancia entre las masas, que se manifiesta por medio de fuerzas.

Los cuerpos se ponen en movimiento mediante leyes exactas, de acuerdo con un marco de referencia.

La materia se encuentra en un espacio euclidiano, infinito en todas direcciones y uniformemente rígido.

El tiempo es absoluto e independiente del espacio.

Bajo estos axiomas se inventa el cálculo diferencial e integral, en sus inicios bastante informal. Newton llamó fluxiones a los pequeños movimientos y Leibniz los llamó infinitesimales. Conceptos intuitivos carentes de rigor, pero que funcionaban en el cálculo práctico. En el Siglo XVIII se profundizó el uso práctico de esta herramienta, en la solución de problemas reales y puntuales. No existían métodos generales, puesto que se carecía de definiciones precisas de conceptos esenciales como función, límite, derivadas e integrales. El rigor de estos conceptos lo inició Agustín Cauchy en su curso de Análisis Matemático de 1821.

Después de la invención del cálculo en 1687, en el Siglo XVIII se profundizaron estos métodos para resolver problemas reales de la naturaleza, naciendo los métodos prácticos para resolver ecuaciones diferenciales, el cálculo variacional y algunos aspectos de la geometría diferencial.

Jacob Bernoulli inició la profundización de los métodos de Leibniz para caracterizar las curvas mecánicas, planteando ecuaciones diferenciales y algunos problemas famosos como el Problema de la catenaria –encontrar la forma que toma una curva perfectamente flexible y homogénea por la acción sólo de su peso, si está fijado por sus extremos–. Su hemano menor, Johann, inicia los estudios del cálculo variacional resolviendo el problema de la braquistócrona: dados dos puntos A y B en un plano vertical, hallar el camino más corto para que una partícula móvil transite de A hacia B en el menor tiempo posible. Daniel Bernoulli, hijo de Johann, considerado iniciador de la fisicomatemática, estudia problemas de hidrodinámica, elasticidad, biomatemática, etc. En este periodo también contribuye Leonard Euler, amigo de los Bernoulli, en el desarrollo de las llamadas matemáticas mixtas, aquellas que haciendo uso de las herramientas matemáticas resuelven problemas aplicados. Es importante mencionar a Joseph Lagrange, quien profundizó en el cálculo variacional y escribió su obra maestra Mecánica Analítica, en donde desarrolla un programa de perfeccionamiento de la obra Principia Matemática de Isaac Newton, dándole una formulación más analítica que geométrica. Lagrange fue ante todo un analista, sin embargo, también contribuyó a iniciar la teoría de permutaciones de las raíces de una ecuación algebraica. Otro matemático importante en el Siglo XVIII fue el marqués Pierre de Laplace, matemático y político esencialmente práctico, cuyo mayor interés fue que las herramientas matemáticas funcionaran, que dieran respuestas a problemas reales; no se preocupó mucho por el rigor en su trabajo matemático. Escribió una monumental obra que tituló Mecánica Celeste, en donde profundiza la obra de Isaac Newton, estableciendo herramientas que hasta hoy día se usan, como la transformada de Laplace e inicia la teoría de probabilidades.

La segunda mitad del Siglo XVIII se conoce como era de la ilustración –caracterizada por una dura crítica a las instituciones existentes y propusieron nuevos sistemas que le dieran a la humanidad los medios para asegurar su bienestar. Se escribió una majestuosa obra llamada Enciclopedia, dirigida por el filósofo Dennis Diderot y el matemático Jean D’Alembert. En la parte del contenido matemático de la obra se pone a la matemática al servicio de la sociedad, como herramienta para resolver sus problemas.

La matemática del Siglo XVIII se caracteriza por su falta de rigor, por carecer de un cuerpo teórico para hacer a las nuevas herramientas matemáticas más eficientes. Fue en el Siglo XIX donde se inició la era del Romanticismo, que trae como consecuencia profundizar en los conceptos matemáticos con más rigor, un amor a la matemática por la misma matemática, con esto se inicia la tercera revolución matemática de la historia. 


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

Entre las necesidades básicas se contemplan servicios de electricidad, sanitarios y agua potable.

"El IPN requiere de un director que le sirva a la nación, a la institución y a la comunidad académica, y no sea instrumento de grupos o partidos políticos”, señalaron los trabajadores del IPN.

En la novela hay contenidos novedosos y muy atractivos, como es el caso de la relación de algunos de los hábitos culturales de los pescadores de Veracruz, Boca del Río y Mandinga.

Al leer a Benjamin, uno se da cuenta de que gran parte de su producción teórica es un recurso para favorecer a los oprimidos en la lucha de clases.

Hemos olvidado lo que ha hecho Xavi, hemos olvidado que es el artífice del mejor Barcelona, el mejor jugador, según Pelé, que algo sabría de futbol. Definitivamente nos equivocamos al aceptar la marcha de Xavi.

El gobierno de Benjamín Netanyahu ha incursionado directamente en los territorios de otros países, en especial contra Siria, Yemen y Líbano.

Sigamos con la historia del trío que estaba tratando de llevar el fuego a su tribu.

Aunque es esencial conocer el pasado para comprender el presente; es necesario saber cómo construir y asimilar ese conocimiento para el análisis concreto de la realidad. Esta segunda forma de valorar la importancia histórica de la obra de Lenin es la que intentaré esbozar.

John Locke, médico y pensador inglés, quien, junto con Hobbes, Rousseau y Montesquieu, delinearon, durante los Siglos XVII y XVIII los fundamentos del liberalismo democrático, teoría política que hoy nos rige.

Un siglo después, las tesis centrales de Imperialismo, fase superior del capitalismo mantienen plenamente su vigencia.

Harald Helfgott saltó a la fama mundial en 2012 cuando presentó a la comunidad matemática la demostración de la conjetura débil de Goldbach.

Es considerado el más prolífico de los matemáticos; su nombre figura en fórmulas, teoremas, números, integrales y constantes en distintas ramas de la matemática.

El Siglo XVII fue el gran viraje en la exploración humana: varios reinos se adueñaron de los océanos Atlántico y Pacífico y Oceanía (Australia y Nueva Zelanda) y de buena parte de las regiones de India y China...

El capital ha convertido al deporte en mercancía en torno a la cual giran inmensos negocios mundiales; hoy en día, a pesar de ser un derecho constitucional, apenas un 39% de los mexicanos tienen acceso al deporte.

La matemática es un producto cultural.