Cargando, por favor espere...

Los fractales en la naturaleza
Los fractales son estructuras cuyo patrón se repite a diferentes escalas y casi de manera infinita. Están presentes prácticamente en todos los aspectos de nuestro entorno, casi ocultos a simple vista.
Cargando...

Los fractales son estructuras cuyo patrón se repite a diferentes escalas y casi de manera infinita. Están presentes prácticamente en todos los aspectos de nuestro entorno, casi ocultos a simple vista, pero con un poco de curiosidad y atención podemos identificarlos desde las nubes y sistemas montañosos hasta las ramificaciones de un helecho y afluencias de un río.

Los fractales son el gran misterio que une a las matemáticas y a la naturaleza, es así como surge la geometría fractal, de la necesidad de tener una mejor aproximación a la realidad, pues la geometría plana y la geometría del espacio estudian figuras y cuerpos que muy difícilmente encontramos en la naturaleza.

En los años setenta, el matemático Benoit Mandelbrot acuñó el término fractal, que deriva del latín fractus, que significa fragmentado, y fue uno de los pioneros en el estudio de estas figuras; en su honor se conoce como Conjunto de Mandelbrot a uno de los fractales más estudiados.

Hoy en día no existe una definición exacta de fractal, sin embargo, hay características que los asocian. Una es la autosemejanza, que representa la forma en la que los patrones se repiten de forma que, al acercarse o alejarse del fractal, se pueden observar formas similares, casi como un patrón infinito, que dan lugar a una apariencia detallada y compleja a cualquier escala. También se definen como objetos con dimensión fractal, lo cual implica que no tienen una dimensión entera. Es decir, un fractal puede tener una dimensión fractal de 1.5, lo cual implica que es un objeto más complejo que una línea (dimensión 1), pero menos que un área (dimensión 2).

 

 

Es común observar patrones de fractales en diferentes formas en la naturaleza; uno de los mejores ejemplos son los copos de nieve, en los que se puede apreciar cómo el elemento se basa en la repetición de los mismos patrones en cada una de sus partes. Otro ejemplo son las líneas costeras, que destacan por las entradas y salidas del mar, iterándose una y otra vez a cada nivel de detalle. Como éstos, podemos observar muchos y maravillosos ejemplos, como los cactus o suculentas, las inflorescencias de la flor de girasol, las conchas de caracoles o las plumas de un pavorreal. En todas estas formas de vida, la naturaleza y la geometría se unen en una danza de patrones infinitos.

Hoy en día, es común apreciar que en el arte se recrean objetos fractales, intentando captar esa esencia caótica, bella y repetitiva que emana de la naturaleza. En los últimos años, incluso, se han incorporado los sistemas fractales a la física o a la computación, como una forma de modelar sistemas complejos o, incluso, comprimir ciertas imágenes.

También son muy útiles en el proceso de entender la evolución de ciertos sistemas caóticos, como el clima, los fenómenos meteorológicos, los mercados financieros o las dinámicas poblacionales. Incluso han entrado en la industria de los videojuegos, utilizándose para generar paisajes y terrenos cada vez más detallistas y reales, de forma que sea posible la creación de mundos virtuales o entornos del metaverso sin necesidad de diseñar manualmente cada uno de los detalles.

Es así como a partir de la observación de la naturaleza y la innata curiosidad y necesidad del ser humano por explicar, entender y crear, podemos apreciar la naturaleza desde otra extraordinaria perspectiva.


Escrito por Blanca Mendoza Mejía

colaboradora


Notas relacionadas

Los problemas personales no afectaron su brillante carrera académica; su jornada incluía largas horas de concentración.

El récord del año más cálido pasó de 0.17 grados centígrados en 2016 a 14.98 grados centígrados en 2023.

El comportamiento migratorio de los tiburones de Groenlandia aún es un misterio para la comunidad científica.

El Siglo XXI es de la comunicación matemática, espero que en el futuro se sumen una mayor cantidad de divulgadores y difusores del conocimiento matemático, así la contribución para nuestra sociedad será enorme, entre sus muchos beneficios, porque mejorará la educación ciudadana.

En teoría, si inventamos un sistema formal del contenido de Don Quijote de La Mancha, lo matematizamos; por lo tanto, lo convertimos en un objeto matemático.

Luego de haber agotado todas las vías para exigir legalidad, la comunidad del CIDE dio a conocer por medio de una publicación que cerrarán la carretera México Toluca en defensa de la institución.

No es raro encontrar bosques enfermos: aquéllos con hojas amarillas o cafés, troncos llenos de grumos resinosos, follaje manchado y, en los casos más graves, la presencia masiva de plantas o insectos parásitos.

La ciencia, para mejores resultados, requiere constancia, equipamiento, infraestructura y recursos suficientes para realizar investigación de calidad.

¿Cómo es que estos genes pasaban de los padres a los hijos?

La vida de Mendel es un ejemplo clásico de perseverancia. Aunque al principio sus observaciones no tuvieron relevancia para la comunidad científica, biólogos y botánicos llegaron a sus mismas conclusiones décadas después de su muerte.

Por muy abstracto que se vuelva el razonamiento matemático procede de la realidad material y tarde o temprano vuelve a ella.

Los ejemplos más conocidos son los invernaderos, pero no son los únicos, existen también las casas sombra, los microtúneles, los túneles y otras estructuras utilizadas dependiendo del cultivo y la región climática.

“Las redes sociales en general son una amenaza para la salud mental de los menores”, declaró el alcalde de la ciudad de Nueva York, Eric Adams.

El aumento quizá se deba, dicen los científicos, al aumento de la temperatura de la superficie del mar en el mundo, que ha aumentado drásticamente en las últimas décadas como consecuencia de la quema de combustibles fósiles.

El capitalismo es el sistema económico dominante en el mundo.