Cargando, por favor espere...
Los objetos matemáticos, como constructos, se conciben en la mente humana; para ello se debe tener una idea precisa para formalizarlos y que luego emerjan sus propiedades. Existen ciertos objetos de enorme tamaño que escapan a nuestra mente limitada, por ejemplo, la totalidad de la recta real o la totalidad de los números naturales. Este problema existe desde que el ser humano empezó a pensar en los objetos de tamaño ilimitado. Fueron los griegos quienes empezaron a reflexionar profundamente, primero por la infinitud del Universo y luego por los objetos matemáticos de naturaleza ilimitada.
Desde la época griega hasta fines del Siglo XIX, lo único válido en el trabajo matemático es el llamado infinito potencial, es decir, aquel que nacía en el mismo acto operatorio y que intuitivamente afirmamos que puede seguirse realizando infinitamente; por ejemplo, en Grecia se entendía que los números naturales recobraban existencia en el acto operatorio de contar, hasta donde se quiera contar, y con la idea de que el acto de contar podía seguir más allá de lo necesitado. No era posible pensar en los números naturales como una totalidad, a esto inimaginable se le llamó infinito actual o en acto. Fue Aristóteles quien lo estableció así, como una característica esencial del trabajo matemático, trabajar potencialmente y no en acto.
Sin embargo, estos objetos inimaginables se sustituyen hoy por simples representaciones o notaciones; para el caso de los números naturales se escribe N para el caso de la recta real se escribe R, simplificando el concepto o idea de tales objetos, causando una ruptura cognitiva, no para los que lo aceptan sin mayor reflexión, sino para aquellos que poseen mayor agudeza mental.
Para dar existencia al infinito actual fue necesario capturar alguna propiedad esencial de tales objetos infinitos. El primero en darse cuenta de que algo esencial diferenciaba a los objetos finitos de los infinitos fue Galileo Galilei, quien mostró que para el caso de los números naturales (objeto infinito) poseía un subconjunto (los números pares), cuyos elementos se podían poner en correspondencia biunívoca con cada número natural (n ↔ 2n). Es decir, los números naturales poseen el mismo tamaño de un subconjunto de él. Ésta es la característica esencial que lo diferencia con los conjuntos finitos, propiedad que fue capturada por Richard Dedekind para definir por primera vez a los conjuntos infinitos: Un conjunto X se dice infinito si posee un subconjunto propio A tal que cada elemento de A se puede poner en correspondencia con cada elemento de X.
Así nace el infinito actual o en acto que hoy, para el caso de los números naturales, representamos por N. Para el caso de la recta real, el objeto geométrico se identifica con el conjunto de los números reales, en este caso, la idea de Richard Dedekind no es aplicable, dado que el conjunto de los números reales no es contable o enumerable. Para ello fue necesario ampliar la definición de Richard Dedekind para incluir a los números reales. La nueva idea vino de la mano de George Cantor, quien estableció dos tipos de conjuntos infinitos: uno enumerable (puede ponerse en correspondencia con los números naturales) y otro no enumerable. Para el primer caso tenemos a los números naturales, para el segundo caso el mismo George Cantor demostró que el conjunto de los números reales no es enumerable. Bajo estos dos tipos de conjuntos estableció una nueva definición de conjunto infinito: un conjunto X es infinito si posee un subconjunto propio enumerable. Para el caso de los números reales tenemos al conjunto de los números racionales Q, subconjunto enumerable de los números reales. De acuerdo al sistema formal utilizado, esta definición puede ser demostrada, para ello simplemente se define un conjunto infinito, si no es finito.
Estas definiciones formales dan existencia a los conjuntos infinitos como un todo, en acto, como dirían los griegos. A pesar de la ruptura cognitiva, los matemáticos formalizan capturando propiedades esenciales, de esta forma dan existencia a objetos para operativizar ciertos propósitos dentro de un contexto matemático.
Un grupo de brillantes matemáticos franceses, autodenominado Bourbaki desarrolló, desde las primeras décadas del Siglo XX, un programa fundacional de la matemática con gran influencia en el trabajo matemático contemporáneo.
En esta novela se cuenta la historia de una ciudad imaginaria de Estados Unidos (EE. UU.), cuyos personajes centrales son ella misma (City).
Poetisa, historiadora, periodista, activista política, defensora de los derechos de las mujeres.
Escritora británica de la etapa victoriana que se destacó por su compromiso político con la abolición de la esclavitud y cuya obra influyó en la reforma de la legislación sobre trabajo infantil.
El evento es organizado por el Movimiento Antorchista con el fin de promover la actividad teatral en colonias, pueblos y escuelas populares.
La FILIJ reunirá a 74 casas editoriales, autores, cuentacuentos, talleristas y artistas de diversas disciplinas.
Manuel Gutiérrez Nájera es considerado el padre del modernismo mexicano.
Desde el inicio de la cuarta revolución matemática, en las primeras décadas del Siglo XX, el formalismo hilbertiano ha caracterizado el trabajo matemático hasta el día de hoy. Este paradigma histórico del formalismo se caracteriza por...
Destacada escritora y poetisa india nacida el 31 de marzo en Kerala.
Nació en Galilea, el 13 de marzo de 1941. En 1948, tras la retirada de las tropas británicas de Palestina y la implantación del Estado de Israel.
Se confirmó que las piezas provienen de diferentes culturas y periodos de la época prehispánica, que incluyen el occidente de México, la costa del Golfo, el Altiplano Central, la zona de Oaxaca y el área maya.
La jornada cultural resultó valiosa en varios sentidos.
En Antorcha hay cultura, se fomenta el progreso y se ofrece alternativa al pueblo desprotegido: es la única opción para convertir a México en una patria más justa, soberana, más digna y mejor para todos.
La educación universitaria es un paso indispensable para el desarrollo científico y tecnológico.
Fue antiimperialista, antimonárquico y en sus textos de ciencia-ficción están descritos con antelación los viajes interplanetarios, la televisión, la Internet y la bomba atómica.
¡Se queda corto! Pemex procesa al 45 % de su capacidad
México cada vez más lejos de la autosuficiencia alimentaria
Gobierno de AMLO sabía del Rancho Izaguirre, revela informe de Guardia Nacional
Mujeres convocan a movilización por rechazo al desafuero de Cuauhtémoc Blanco
Suman mil 285 incendios forestales en México durante el 2025
Prohíbe INE a la Iglesia Católica promover a aspirantes al Poder Judicial
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador