Cargando, por favor espere...

La enseñanza de las geometrías griegas en las escuelas (II de II)
El maestro de hoy, no todos desde luego, pero sí la mayoría, ya no enseña a su alumno a razonar y analizar.
Cargando...

La geometría ha enseñado al hombre a distinguir el espacio donde habita, a detectar la estructura geométrica de la naturaleza y del universo en la que vive, a distinguir una distancia de otra, a diferenciar el grosor de los árboles y, finalmente, a comprender que la forma es el primer nivel de conocimiento de un fenómeno, toda vez que es lo primero que capta. Después de este nivel, el hombre comienza a distinguir la cantidad de la forma, a medir, a calcular volúmenes y áreas de diferentes objetos y sólidos presentes en la naturaleza; es decir, empieza a relacionar cantidades; esto significa que ha alcanzado un nivel alto de abstracción. A este grado de abstracción es al que debe aspirarse en las escuelas. 

Sin embargo, en las escuelas de nivel básico (al menos en México), se ha dejado de practicar la abstracción.  El maestro de hoy, no todos desde luego, pero sí la mayoría, ya no enseña a su alumno a razonar y analizar. En las escuelas mexicanas se extraña el debate y el razonamiento matemático que realizaron los científicos antiguos. Me refiero a los debates que se generaron respecto a las aportaciones científicas de Tales de Mileto (630– 540 a.C.), Anaximandro de Mileto (610–547 a.C.), Pitágoras de Samos (569–475 a.C.), Aristeo de Crotona (Siglo V a.C., discípulo de Pitágoras), Teodoro de Cirene (465–398 a. C.), Teeteto (417–369 a.C.), Eudoxo de Cnido (390–337 a.C.), Aristóteles de Estagira (384 –322 a. C.), Menecmo (380–320 a.C.), Aristarco de Samos (310–230 a.C.), Euclides de Alejandría (325–265 a.C.), Arquímedes de Siracusa (287–212 a.C.), Erastótenes de Cirene (276–194 a.C.), Apolonio de Perga (262–190 a.C.), Hiparco de Nicea (190–120 a.C.), Menelao de Alejandría (70–140 d.C.), Claudio Ptolomeo (100–170 d.C.), Pappus de Alejandría (290–350 d.C.), Hipatia de Alejandría (350-370 – 415 d.C.), entre otros grandes científicos que, con sus aportaciones, han guiado al hombre actual a comprender su realidad y a actuar sobre ella.  

Ahí es donde radica la utilidad e importancia de la matemática como ciencia; por eso hoy se hace más necesario que el maestro y sus alumnos estudien las obras originales de cada uno de los científicos arriba mencionados. Cito, a manera de ejemplo, el debate suscitado entre Aristóteles y Jenócrates y los partidarios de éste, acerca de las líneas indivisibles. Aristóteles se adelantó a su t|iempo en demostrar a Jenócrates que las líneas siempre son divisibles y pueden dividirse en partes infinitas, sin importar su longitud, sea ésta pequeña o grande. La respuesta del sabio de Estagira sobre la existencia de líneas indivisibles fue la siguiente: “no es preciso que lo que admite divisiones finitas no pueda ser ‘pequeño’ y ‘poco’. Y es que llamamos ‘pequeño’ al espacio, a la magnitud y, en general, a lo continuo –incluso en los casos en los que conviene el calificativo ‘poco’– y sin embargo decimos que tienen infinitas divisiones”. (Aristóteles, Sobre las líneas indivisibles y mecánica, pág. 26, segundo párrafo). En el siguiente párrafo de la misma página, Aristóteles continúa: “si hay líneas indivisibles en la longitud compuesta, ‘pequeño’ se dice en relación con esas indivisibles, y en ellas hay infinitos puntos. En tanto que la línea, admite una división por un punto. Por tanto, cualquier línea que no fuera indivisible tendría infinitas divisiones. Algunas de éstas son pequeñas. Y las razones son infinitas y es posible cortar cualquier recta que no sea indivisible según la razón dada”.

En aquellos tiempos no fue fácil llegar a la conclusión que Aristóteles había alcanzado, porque la matemática no estaba formalizada todavía, pero se intuía ya el método deductivo y analítico del estagirita. Tuvieron que transcurrir más dos mil 200 años para que los matemáticos alemanes Richard Dedekin (1831–1916) y Georg Cantor (1845–1918) demostraran la afirmación de Aristóteles: “que entre dos números reales distintos, siempre es posible encontrar infinitos números reales, es decir, infinitos números racionales e infinitos números irracionales”. Es decir que la recta, la recta real, es divisible y se puede partir en infinitos puntos.

Esta lección es la que nos deja la historia y la filosofía de las matemáticas y, sobre todo, el método analítico de nuestros antepasados científicos materialistas. Este método materialista es el que urge recuperar en las escuelas.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

La educación universitaria es un paso indispensable para el desarrollo científico y tecnológico.

La idea de aprender sin esfuerzo hace que el conocimiento adquirido en los menores sea volátil, superficial, en desmedro de su capacidad intelectual; y preocupa que cada año el nivel académico e intelectual de niños y jóvenes está decayendo a sitios alarmantes.

Las bacterias son capaces de introducir a su repertorio genético otros genes que se encuentren flotando en el entorno.

En este artículo no hablaré de los libros que son útiles para la enseñanza, ni de divulgación, me centraré en libros estrictos de la disciplina. Aunque la matemática y la filosofía son distintos, tienen elementos en común.

Ingenuity dispone de dos cámaras, una en blanco y negro para la navegación y otra en color, que está orientada para tomar imágenes del terreno.

El sustento del conocimiento matemático se desarrolló en la antigua Grecia; uno de los filósofos que contribuyó a su desarrollo fue Aristóteles, quien planteó las leyes básicas del pensamiento humano a fin de obtener deducciones válidas.

En la propuesta del Conacyt que ha circulado entre la comunidad, identificamos tres graves problemas: la confusión entre gobierno y Estado, la centralización de las decisiones y la falta de referencia al financiamiento estable.

A pesar de ser matemático, nunca estuvo interesado en los temas de moda de la época (física-matemática), tampoco en la geometría. Fue, por varias razones, único en la historia de la matemática.

En el ámbito de la astronomía, Galileo no solo confirmó que la Tierra se movía en torno al Sol y se burló de los inquisidores del Santo Oficio.

Blade Runner no es una cinta más de ciencia ficción: es un filme que mueve a la reflexión.

Con sus ataques a las instituciones educativas y culturales, López Obrador pretende eliminar el pensamiento crítico, una actitud retrógrada muy parecida a la que hace varios siglos desembocó en el asesinato de judíos en la primera mitad del Siglo XX.

El desarrollo de la sociedad planteó nuevos retos que propiciaron la creación de nuevas herramientas, que ayudaron a encontrar el área exacta de un círculo de radio uno.

Hace alrededor de 100 mil años se hicieron las primeras modificaciones a algunas herramientas que permitieron la sobrevivencia, y para lograrlo el lenguaje numérico fue fundamental.

Se trata de una fábrica de generación de datos, cuyo propósito es ofrecer estos datos a las empresas que desarrollan modelos de Inteligencia Artificial .

El dilema de las redes sociales aborda el hecho de cómo el producto que las compañías “procesan” para lograr la obtención de fabulosas ganancias somos los mismos seres humanos.