Cargando, por favor espere...

Jacob Bernoulli y la espiral maravillosa
Para una circunferencia no es difícil notar que la forma de la figura siempre surge y resurge siendo la misma
Cargando...

 

Las conchas, caracoles, moluscos, tormentas, huracanes y galaxias con forma de espiral abundan en la naturaleza y en el universo. Esas espirales son descritas por una ley (fórmula) conocida como la espiral logarítmica, estudiada por primera vez en 1638 por el matemático francés René Descartes (1596–1650) y publicada en 1657. Descartes buscaba una curva con una propiedad similar a la de un círculo, de modo que la tangente en cada punto de la curva formara el mismo ángulo con el vector-radio que partía desde un centro. El segundo científico en estudiar independientemente tal geometría fue el matemático italiano Evangelista Torricelli (1608–1647), quien la describió en 1644 y calculó su longitud. Pero fue Jacob Bernoulli (1655–1705) quien le dedicó más tiempo a su estudio y la caracterizó como la “espiral maravillosa” (Spira mirabilis en latín) con la frase Eadem mutata, resurgo: aunque transformado, aparezco de nuevo igual. Para una circunferencia no es difícil notar que la forma de la figura siempre surge y resurge siendo la misma, pero lo maravilloso es que para la espiral logarítmica el proceso de surgimiento y resurgimiento se verifica también.

Sobre la espiral logarítmica se ha escrito mucho. Mencionaré solo dos obras que pueden ayudar al lector a profundizar sobre el tema. La primera es el libro del director de la División de Ciencias del Hubble Space Telescope Science Institute, Mario Livio, titulado La proporción áurea: la historia del phi, el número más sorprendente del mundo, págs. 130–139; la segunda se encuentra en el libro On Growth and Form (Sobre crecimiento y forma), de D’Arcy Thompson, quien dedicó el capítulo XI de su tratado a la espiral logarítmica.

En estas dos obras se explica que la circunferencia es equiangular, es decir, que en cualquier punto de ella, el ángulo que forma el radio con la tangente es siempre constante e igual a un ángulo recto. Por eso Descartes se había planteado la determinación de una curva que también fuera equiangular. Esta propiedad fue estudiada con más detenimiento por Jacob, a tal grado que solicitó que en su epitafio se colocara la frase Eadem mutata, resurgo: deseo que no se cumplió.

Para entender la espiral logarítmica es necesario dividir su explicación en varios incisos. El primero tiene que ver con su construcción dinámica –dependiente del tiempo– y la obtención de la relación estática entre la distancia y el ángulo que se forma con el vector – radio r, conocido como ángulo polar, que denotaremos θ, es decir, la relación r= a.ebθ. El número real positivo a es un factor de escala que determina el tamaño de la espiral, mientras que el número real positivo b controla cuán fuerte y en qué dirección está enrollada dicha espiral. La ecuación polar considerada más arriba, puede también escribirse como θ=1/b ln(r/a) es decir, el ángulo polar θ expresado en función de logaritmo de radio polar r. De ahí su nombre espiral logarítmica. En el segundo inciso, tomando al valor a como un factor de escala y b=1 obtenemos la circunferencia. El tercer inciso explica que la espiral logarítmica es también considerada espiral geométrica, ya que las distancias entre sus brazos se incrementan en progresión geométrica, mientras que en una espiral de Arquímedes, por ejemplo, esas distancias son constantes. En el cuarto inciso se encuentra la característica equiangular que motivó a Descartes y que emocionó a Jacob Bernoulli al caracterizar la curva logarítmica como “espiral maravillosa”, pues al igual que en la circunferencia en la espiral logarítmica la forma de la figura siempre surge y resurge siendo la misma.

En conclusión, esta ley encontrada por René Descartes, Jacob Bernoulli y Evangelista Torricelli, surgió de un análisis profundo que ellos hicieron sobre los fenómenos naturales mencionados al principio, además de las espirales que observaron en el mundo de las plantas como, por ejemplo, la ubicación de las semillas de un girasol, las escamas de una piña, etc. Pero no solo eso, gracias a sus aportaciones sobre la espiral logarítmica, el hombre ha podido fabricar cuchillas giratorias en varias máquinas que por su característica logarítmica tienen un desgaste menor. 


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

La ANEPPMAC realizó en la UAG un evento deportivo, cultural y científico en el que alumnos de la Escuela Antonio Caso Zapopan consiguieron primeros lugares por sus proyectos.

La Lluvia de Meteoros Delta Acuáridas será más visible en el hemisferio sur.

Las cícadas son plantas únicas, sobrevivientes de casi 280 millones de años, compartieron espacio y tiempo con los dinosaurios y se consideran fósiles vivientes.

Serán visibles en todo el hemisferio norte y sus meteoros podrán superar los 50 kilómetros por segundo.

Euclides concentró todo el conocimiento matemático creado por los filósofos y matemáticos anteriores a él, entre ellos Eudoxo y Aristóteles.

Por primera vez en el mundo, científicos de Siberia lograron curar del cáncer a gatos y perros a través de una terapia basada en la captura de neutrones por el boro.

Hace un par de años tuve dolor muscular, cansancio, fiebre y malestar general; por los síntomas, pensé que era Covid-19; pero tras varias pruebas, el diagnóstico final fue dengue.

La importancia de su trabajo científico radicó en que se adelantaron a predecir lo que pasaría antes de la completa destrucción de la capa de ozono (O3).

La obra aplica de “forma magistral” el método de análisis marxista-leninista, que permite al autor pronosticar los eventos que se desarrollaron en años posteriores, en los que los principales países imperialistas del mundo buscan mantener su hegemonía.

El hombre antiguo estuvo “muy cerca” de hallar el área del círculo. Sin embargo, como nos enseñaron en “las buenas escuelas”, el área del círculo con radio uno es un número irracional con un número infinito de dígitos que no son periódicos.

Fueron 5,504 especies previamente desconocidas de virus las que se identificaron, entre ellas, al 'Taraviricota', que podría ser el eslabón perdido en la evolución de los virus ARN.

Robot supuestamente harto de trabajar decidió terminar con su existencia

A bordo del cohete Centaur, de la empresa United Launch Alliance (ULA), viajan cinco robots diseñados por la UNAM, mismos que podrán desplazarse de manera autónoma por el suelo de la luna.

¿Es posible encontrar la cuadratura de una figura geométrica? la respuesta en este texto. La cuadratura de una figura geométrica consiste en encontrar exactamente su área en un cuadrado.

Para reducir la acumulación del plástico, científicos de la Universidad de Singapur estudian al gusano Zophobas Atratus, reconocido por su capacidad de consumir y digerir este material.