Cargando, por favor espere...
Las conchas, caracoles, moluscos, tormentas, huracanes y galaxias con forma de espiral abundan en la naturaleza y en el universo. Esas espirales son descritas por una ley (fórmula) conocida como la espiral logarítmica, estudiada por primera vez en 1638 por el matemático francés René Descartes (1596–1650) y publicada en 1657. Descartes buscaba una curva con una propiedad similar a la de un círculo, de modo que la tangente en cada punto de la curva formara el mismo ángulo con el vector-radio que partía desde un centro. El segundo científico en estudiar independientemente tal geometría fue el matemático italiano Evangelista Torricelli (1608–1647), quien la describió en 1644 y calculó su longitud. Pero fue Jacob Bernoulli (1655–1705) quien le dedicó más tiempo a su estudio y la caracterizó como la “espiral maravillosa” (Spira mirabilis en latín) con la frase Eadem mutata, resurgo: aunque transformado, aparezco de nuevo igual. Para una circunferencia no es difícil notar que la forma de la figura siempre surge y resurge siendo la misma, pero lo maravilloso es que para la espiral logarítmica el proceso de surgimiento y resurgimiento se verifica también.
Sobre la espiral logarítmica se ha escrito mucho. Mencionaré solo dos obras que pueden ayudar al lector a profundizar sobre el tema. La primera es el libro del director de la División de Ciencias del Hubble Space Telescope Science Institute, Mario Livio, titulado La proporción áurea: la historia del phi, el número más sorprendente del mundo, págs. 130–139; la segunda se encuentra en el libro On Growth and Form (Sobre crecimiento y forma), de D’Arcy Thompson, quien dedicó el capítulo XI de su tratado a la espiral logarítmica.
En estas dos obras se explica que la circunferencia es equiangular, es decir, que en cualquier punto de ella, el ángulo que forma el radio con la tangente es siempre constante e igual a un ángulo recto. Por eso Descartes se había planteado la determinación de una curva que también fuera equiangular. Esta propiedad fue estudiada con más detenimiento por Jacob, a tal grado que solicitó que en su epitafio se colocara la frase Eadem mutata, resurgo: deseo que no se cumplió.
Para entender la espiral logarítmica es necesario dividir su explicación en varios incisos. El primero tiene que ver con su construcción dinámica –dependiente del tiempo– y la obtención de la relación estática entre la distancia y el ángulo que se forma con el vector – radio r, conocido como ángulo polar, que denotaremos θ, es decir, la relación r= a.ebθ. El número real positivo a es un factor de escala que determina el tamaño de la espiral, mientras que el número real positivo b controla cuán fuerte y en qué dirección está enrollada dicha espiral. La ecuación polar considerada más arriba, puede también escribirse como θ=1/b ln(r/a) es decir, el ángulo polar θ expresado en función de logaritmo de radio polar r. De ahí su nombre espiral logarítmica. En el segundo inciso, tomando al valor a como un factor de escala y b=1 obtenemos la circunferencia. El tercer inciso explica que la espiral logarítmica es también considerada espiral geométrica, ya que las distancias entre sus brazos se incrementan en progresión geométrica, mientras que en una espiral de Arquímedes, por ejemplo, esas distancias son constantes. En el cuarto inciso se encuentra la característica equiangular que motivó a Descartes y que emocionó a Jacob Bernoulli al caracterizar la curva logarítmica como “espiral maravillosa”, pues al igual que en la circunferencia en la espiral logarítmica la forma de la figura siempre surge y resurge siendo la misma.
En conclusión, esta ley encontrada por René Descartes, Jacob Bernoulli y Evangelista Torricelli, surgió de un análisis profundo que ellos hicieron sobre los fenómenos naturales mencionados al principio, además de las espirales que observaron en el mundo de las plantas como, por ejemplo, la ubicación de las semillas de un girasol, las escamas de una piña, etc. Pero no solo eso, gracias a sus aportaciones sobre la espiral logarítmica, el hombre ha podido fabricar cuchillas giratorias en varias máquinas que por su característica logarítmica tienen un desgaste menor.
Apolonio de Perga, llamado "El Gran Geómetra", es uno de los tres grandes matemáticos de la antigüedad, mérito que comparte con Euclides y Arquímedes.
A partir de este primero de diciembre, dispositivos como Winko, Iphone, ZTE dejarán de ser compatibles con la aplicación de WhatsApp.
El desarrollo de la investigación matemática ha sido tan espectacular, que abarcar todo el conocimiento actual de la matemática se ha vuelto imposible para cualquier ser humano.
Los artrópodos fueron el grupo más abundante desde que la vida animal apareció en la Tierra
¿Realmente son nocivas para el ecosistema? Un ambientalista dirá: “sí, porque desplazan especies nativas”. Sin embargo, ciertas necesidades se satisfacen mejor con especies exóticas que con nativas, por lo que es necesario asumir riesgos.
Que la energía cinética (antes llamada fuerza viva) representa el cambio del movimiento mecánico en otra forma de movimiento.
El país no conseguirá la salud ecológica y humana con las buenas intenciones de la Semarnat, porque se necesita voluntad política, mayor presupuesto.
El pueblo demanda salud, obra de 1951, es una de las pinturas que Diego Rivera plasmó que, además de centrarse en temas sociales y políticos, también se hizo alusión a la ciencia.
El sustento del conocimiento matemático se desarrolló en la antigua Grecia; uno de los filósofos que contribuyó a su desarrollo fue Aristóteles, quien planteó las leyes básicas del pensamiento humano a fin de obtener deducciones válidas.
El Coahuilasaurus lipani destacó por su hocico corto y profundo.
"Durante esta administración empezamos muy mal desde que se decía que los científicos éramos la mafia. Todos los apoyos, hubo una reducción clara", afirmó el investigador Alfredo Herrera Estrella.
Durante la última década en el Reino Unido, se han identificado 19 nuevos mecanismos genéticos de resistencia en bacterias.
El Presidente López Obrador desea transformar al modelo educativo actual del CIDE en brazo ideológico de la 4ª T, pero se limita a imponer un director obsecuente sin precisar qué tipo de economía reemplazará al “neoclasisismo” y al “neoliberalismo”.
La proteína es un macronutriente indispensable para el crecimiento y el mantenimiento de órganos y músculos en el cuerpo de los animales.
“(La sesión) fue aplazada en aras de garantizar el estricto apego a las disposiciones normativas relativas al proceso de notificación”, se lee en el comunicado.
Putin actualiza doctrina que permite respuesta nuclear a un ataque contra Rusia
Brasil impulsa la Alianza Global contra el Hambre y la Pobreza con objetivos para 2030
Sheinbaum y Biden se reúnen en Brasil; abordan migración, seguridad y economía
Trump amenaza con utilizar al Ejército para deportación de migrantes
El teatro, un arte que debe despertar al pueblo
Escrito por Romeo Pérez
Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.