Cargando, por favor espere...

Srinivasa Ramanujan: el enigma de un excepcional cerebro matemático
¿Por qué algunas personas pueden comprender más fácil el formalismo matemático? ¿Por qué les fluyen ideas matemáticas con mayor facilidad que a otras? Esta increíble mente perteneció a uno de los más enigmáticos en la Historia de la Matemática.
Cargando...

En la actualidad, la neurociencia está intentando explicar los enigmas de la mente humana, ¿por qué algunas personas pueden comprender el formalismo matemático con más facilidad que otras?, ¿por qué a algunas personas les fluyen ideas matemáticas con mayor facilidad, y a otras no? Son algunas de las preguntas para las que no hay una respuesta científicamente aceptada. Cómo podemos explicar la mente de un moribundo enfermo que el escuchar el número 1729 diga: “es el menor entero que puede ser expresado de dos maneras distintas como suma de dos números elevados al cuadrado” (cosa que es real: 1729 = 13+ 123= 93+ 103). Esta increíble y extraordinaria mente perteneció a uno de los personajes más enigmáticos en la Historia de la Matemática, se trata del indio Srinivasa Ramanujan, quien nació el 22 de diciembre de 1887 en Erode, provincia de Madrás, en el seno de una familia de extrema pobreza.

Su extraordinario talento lo llevó, en la secundaria, a recibir el premio K. Rangantha Rao. Sin título universitario, empezó a buscar trabajo a la vez que realizaba sus investigaciones, sin una educación formal en matemáticas, pero con un talento extraordinario, capaz de captar de manera intuitiva e inductiva las estructuras subyacentes de los números, descubriendo formulas y algoritmos que estaban por encima de la compresión de la mayoría de matemáticos de su época. Sus descubrimientos carecían del rigor actual, sin embargo, contenían patrones y simetrías en series numéricas extraordinarias. Su primera publicación la hizo en la Revista de la Sociedad Matemática de La India, en donde descubrió que las fracciones de los números de Bernoulli eran siempre divisibles por seis y otros resultados más.

Después de muchos intentos de contactar a matemáticos europeos para que vieran y evaluaran su trabajo, sin mayor respuesta o con alguna respuesta que solo hacía referencia a su falta de rigor matemático, el 16 de enero de 1913 decidió escribir a uno de los matemáticos más famosos de Europa, el inglés Godfrey Hardy (1877 – 1947), quien al revisar las primeras páginas del escrito expresó: “estas fórmulas me derrotaron completamente. Yo no he visto antes nada de esto. Una simple mirada resulta suficiente para darse cuenta de que solamente las podría haber escrito un matemático de primera clase. Deben ser verdad, porque nadie puede tener la imaginación suficiente para inventárselas”.

Desde ese momento se propuso traer a Ramanujan a Inglaterra. Después de una inicial negativa, finalmente aceptó viajar a la Inglaterra, el 17 de marzo de 1914. Bajo la protección académica del profesor Hardy, se inició una fructífera e histórica colaboración. Hardy y Ramanujan eran personajes distintos, Hardy era ateo y Ramanujan profundamente religioso, Hardy era escrupulosamente riguroso, mientras que Ramanujan era informal e intuitivo, ambos provenían de culturas completamente diferentes, sin embargo, los unía la pasión por la matemática: a pesar de las diferencias, el profesor Hardy sentía una profunda admiración por la mente privilegiada de Ramanujan y dijo en alguna ocasión: “llegaba a través de un proceso de argumentación mezclada de intuición y de inducción de la que fue enteramente incapaz de dar ninguna explicación coherente”. La mente de Ramanujan es un enigma científico y su producción matemática es estudiada hasta el día de hoy.

En los cinco años que Ramanujan estuvo en Cambridge, obtuvo logros importantes. En 1916 recibió su doctorado con la tesis Números altamente compuestos, que fue publicada en las Actas de la London Mathematical Society; en 1917 fue elegido miembro de la Sociedad Matemática de Londres; en 1918 fue nombrado miembro de la Royal Society por sus investigaciones en funciones elípticas y en Teoría de Números; en 1918 se convirtió en miembro del Trinity College. Todos estos méritos académicos no fueron suficientes para mejorar sus condiciones de vida, su comportamiento introvertido y extremadamente religioso no hizo posible su total integración a la cultura británica. Su alimentación, estrictamente vegetariana, y su pobre condición de vida, provocaron que enfermara gravemente de tuberculosis, obligándolo a regresar a Kumbakunam (La India) en 1919. Murió el 26 de abril de 1920 a los 32 años, el diagnóstico fue amebiasis hepática (infección generalizada al hígado). Sus últimas palabras fueron: “una ecuación para mí no tiene sentido a menos que represente un pensamiento de Dios”.


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

La geometría no es una forma de la intuición a priori, como afirmaba Kant, sino una construcción lógica. Estos argumentos fueron la base de la famosa escuela llamada "positivismo lógico".

Sirvan estos dos ejemplos para que los estudiantes mexicanos despierten su interés por el desarrollo histórico de las fórmulas matemáticas.

En esta era digital somos aparentemente libres de hacer público lo que pensamos y sentimos; de compartir a dónde viajamos y de comprar una infinidad de mercancías. Pero esta “libertad” choca con el obstáculo económico.

El maíz, con una producción global que supera los 800 millones de toneladas anuales, es el centro de identidad de muchas civilizaciones y la base alimentaria de sociedades antiguas y modernas.

El hábito tan frecuente de beber café ha traído consigo una gran polémica acerca de si es bueno o malo beber café. Ante esto, múltiples investigaciones se han centrado en responder tal cuestión

Un grupo de científicos reveló que el papiro narra la “vivificación de los gorriones”.

El caso chileno ilustra los riesgos ecológicos que trae consigo la producción de litio: en el Salar del Carmen se extrae diariamente cantidades gigantescas de agua la empresa SQM, la segunda mayor productora de litio en el mundo.

Al repunte del Covid-19 en México y varios países de AL, se suma la preocupación de la gente por saber si esta situación pueda crecer a una magnitud considerable que nos obligue a volver a un confinamiento como en años anteriores.

El papel de la ciencia en el desarrollo social se piensa en sus aportaciones a la tecnología para elevar la productividad, generar riqueza, crecimiento económico y progreso.

Aunque la pérdida de cola en los humanos ha sido objeto de diferentes teorías evolutivas, hasta hace unos días era un misterio sin resolver.

Las estatuillas de Venus caracterizaron el arte europeo del Paleolítico, la etapa prehistórica más antigua y larga del Homo sapiens.

A la naturaleza no le importa si los machos son atraídos hacia los machos o las hembras hacia las hembras. Es mas bien la ideología humana la que castiga estos comportamientos, argumentando que solo prohíbe lo que es “antinatural”.

Ante el actual embate del cambio climático, ¿cómo superará la humanidad dicha contradicción? ¿Mediante la competencia o la cooperación?

Cada 14 de marzo se celebra el a la Matemática. Esta fecha fue elegida en virtud de que hace alusión a 3.14, que es el valor aproximado del enigmático número Pi (π).

El oportunista luce como un “matasanos”, un doctor de ocasión que, viendo al paciente lamentarse por el dolor que le aqueja en una pierna, decide cortársela. Solo tenía un golpe, pero nadie podrá decirle al doctor que no logró curar el dolor.