Cargando, por favor espere...
En la actualidad, la neurociencia está intentando explicar los enigmas de la mente humana, ¿por qué algunas personas pueden comprender el formalismo matemático con más facilidad que otras?, ¿por qué a algunas personas les fluyen ideas matemáticas con mayor facilidad, y a otras no? Son algunas de las preguntas para las que no hay una respuesta científicamente aceptada. Cómo podemos explicar la mente de un moribundo enfermo que el escuchar el número 1729 diga: “es el menor entero que puede ser expresado de dos maneras distintas como suma de dos números elevados al cuadrado” (cosa que es real: 1729 = 13+ 123= 93+ 103). Esta increíble y extraordinaria mente perteneció a uno de los personajes más enigmáticos en la Historia de la Matemática, se trata del indio Srinivasa Ramanujan, quien nació el 22 de diciembre de 1887 en Erode, provincia de Madrás, en el seno de una familia de extrema pobreza.
Su extraordinario talento lo llevó, en la secundaria, a recibir el premio K. Rangantha Rao. Sin título universitario, empezó a buscar trabajo a la vez que realizaba sus investigaciones, sin una educación formal en matemáticas, pero con un talento extraordinario, capaz de captar de manera intuitiva e inductiva las estructuras subyacentes de los números, descubriendo formulas y algoritmos que estaban por encima de la compresión de la mayoría de matemáticos de su época. Sus descubrimientos carecían del rigor actual, sin embargo, contenían patrones y simetrías en series numéricas extraordinarias. Su primera publicación la hizo en la Revista de la Sociedad Matemática de La India, en donde descubrió que las fracciones de los números de Bernoulli eran siempre divisibles por seis y otros resultados más.
Después de muchos intentos de contactar a matemáticos europeos para que vieran y evaluaran su trabajo, sin mayor respuesta o con alguna respuesta que solo hacía referencia a su falta de rigor matemático, el 16 de enero de 1913 decidió escribir a uno de los matemáticos más famosos de Europa, el inglés Godfrey Hardy (1877 – 1947), quien al revisar las primeras páginas del escrito expresó: “estas fórmulas me derrotaron completamente. Yo no he visto antes nada de esto. Una simple mirada resulta suficiente para darse cuenta de que solamente las podría haber escrito un matemático de primera clase. Deben ser verdad, porque nadie puede tener la imaginación suficiente para inventárselas”.
Desde ese momento se propuso traer a Ramanujan a Inglaterra. Después de una inicial negativa, finalmente aceptó viajar a la Inglaterra, el 17 de marzo de 1914. Bajo la protección académica del profesor Hardy, se inició una fructífera e histórica colaboración. Hardy y Ramanujan eran personajes distintos, Hardy era ateo y Ramanujan profundamente religioso, Hardy era escrupulosamente riguroso, mientras que Ramanujan era informal e intuitivo, ambos provenían de culturas completamente diferentes, sin embargo, los unía la pasión por la matemática: a pesar de las diferencias, el profesor Hardy sentía una profunda admiración por la mente privilegiada de Ramanujan y dijo en alguna ocasión: “llegaba a través de un proceso de argumentación mezclada de intuición y de inducción de la que fue enteramente incapaz de dar ninguna explicación coherente”. La mente de Ramanujan es un enigma científico y su producción matemática es estudiada hasta el día de hoy.
En los cinco años que Ramanujan estuvo en Cambridge, obtuvo logros importantes. En 1916 recibió su doctorado con la tesis Números altamente compuestos, que fue publicada en las Actas de la London Mathematical Society; en 1917 fue elegido miembro de la Sociedad Matemática de Londres; en 1918 fue nombrado miembro de la Royal Society por sus investigaciones en funciones elípticas y en Teoría de Números; en 1918 se convirtió en miembro del Trinity College. Todos estos méritos académicos no fueron suficientes para mejorar sus condiciones de vida, su comportamiento introvertido y extremadamente religioso no hizo posible su total integración a la cultura británica. Su alimentación, estrictamente vegetariana, y su pobre condición de vida, provocaron que enfermara gravemente de tuberculosis, obligándolo a regresar a Kumbakunam (La India) en 1919. Murió el 26 de abril de 1920 a los 32 años, el diagnóstico fue amebiasis hepática (infección generalizada al hígado). Sus últimas palabras fueron: “una ecuación para mí no tiene sentido a menos que represente un pensamiento de Dios”.
Aunque la pérdida de cola en los humanos ha sido objeto de diferentes teorías evolutivas, hasta hace unos días era un misterio sin resolver.
En este artículo no hablaré de los libros que son útiles para la enseñanza, ni de divulgación, me centraré en libros estrictos de la disciplina. Aunque la matemática y la filosofía son distintos, tienen elementos en común.
La ANEPPMAC realizó en la UAG un evento deportivo, cultural y científico en el que alumnos de la Escuela Antonio Caso Zapopan consiguieron primeros lugares por sus proyectos.
A pesar de que esta tecnología no fue creada específicamente para su aplicación en la agricultura, en la actualidad es indispensable para optimizar y hacer más eficiente el proceso de producción agrícola.
Queda claro que AMLO tiene un desconocimiento abismal acerca de la relación entre la ciencia y la política.
El acceso a las vacunas “es uno de los retos definitorios de la pandemia”, afirmó el máximo responsable de la agencia de salud de Naciones Unidas.
Aunque amado por unos y odiado por otros, el huitlacoche tiene un papel relevante en la economía, gastronomía y en la ciencia.
El mundo cambia, la gran honda cósmica se mueve con base en leyes, no en plegarias.
Estamos entrando en una crisis mundial de salud que, de no atenderse adecuada y prontamente, podría dirigirnos a una época en la que las personas morirán por infecciones microbianas.
En lo que va de 2019 México ha registrado 74 mil 277 casos de dengue, cifra que lo ubica en el cuarto lugar de América Latina, solo después de Brasil (un millón 958 mil 31), Nicaragua (94 mil 513) y Colombia (84 mil 644).
En febrero de 2001 se publicaron los resultados de casi una década de trabajo del prometedor programa de investigación genética: Proyecto Genoma Humano, el cual logró descifrar el 90 por ciento del genoma humano.
El inicio de la rigurosidad en el pensamiento matemático es obra del gran maestro Weierstrass, quien, entre otras atribuciones, estableció la existencia de una curva continua sin tangentes, sorprendiendo a los analistas de su época.
Los humanos, a diferencia de los animales, son enseñados en familias, escuelas y grupos humanos insertos en sociedades cambiantes en términos estructurales e ideológicos.
En esta era digital somos aparentemente libres de hacer público lo que pensamos y sentimos; de compartir a dónde viajamos y de comprar una infinidad de mercancías. Pero esta “libertad” choca con el obstáculo económico.
“El pensamiento científico inventa conceptos implícitamente definidos mediante axiomas, postulados arbitrariamente, sin otra exigencia que la ausencia de contradicción", así se instauró en la matemática el paradigma que caracteriza hoy a la matemática.
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador