Cargando, por favor espere...
Toda afirmación en matemática es siempre referida a un determinado sistema formal. La afirmación: No existe división por cero se refiere al sistema formal de los números reales con las operaciones usuales de la enseñanza escolar.
Conceptualmente, la operación de dividir un número por otro consiste en saber cuántas veces el segundo número (llamado divisor) está contenido en el primero; por ejemplo, 10 dividido por 5 es 2, puesto que 5 está dos veces contenido en el 10. Formalmente se escribe: 5 x2 = 10, si y sólo si 10/5 = 2.
¿Qué significaría, si el divisor es 0?, en vista que el cero representa la ausencia de cantidad, la contención del cero en cualquier número, simplemente carece de sentido conceptual. Sin embargo, aunque es una justificación plausible del por qué no es posible dividir por cero, no constituye una afirmación que haya sido demostrada dentro del sistema formal de los números reales.
En matemática, una afirmación está sustentada en otra afirmación y esta afirmación en otra y así sucesivamente, llegando finalmente a los axiomas, que definen el sistema formal usado. En este caso, es suficiente saber (o haber probado) que cualquier número real multiplicado por 0 da como resultado 0. La prueba de que no existe división por cero es muy simple: usamos el viejo razonamiento de los griegos: supongamos que, si es posible, para llegar a una contracción (método por el absurdo), veremos:
Dado un número real diferente de cero , supongamos que existe un número real k tal que /0=k luego =0xk, lo cual es absurdo, puesto que todo número real multiplicado por cero debe dar cero.
¿Qué pasa si =0? Se tendría que para cualquier k se cumple 0xk=0: luego no tendríamos un resultado único de la división, y por lo tanto esta operación no estaría bien definida matemáticamente.
En conclusión, la división por cero ni conceptualmente ni formalmente es posible realizarla dentro del sistema formal de los números reales.
En algunos textos (a veces de profesores) se afirma que la división por cero da infinito, simbolizado por /0=∞. Es un error conceptual enorme, puesto que ∞ no representa un número; es un símbolo que expresa una cantidad arbitrariamente grande y tampoco tiene sentido escribir /0. El proceso operatorio con una cantidad arbitrariamente grande o arbitrariamente pequeña (por ejemplo, acercarse infinitamente al 0) sólo tiene una realización formal (matemática) a través del concepto y definición del límite de funciones, y es lo que se maneja en la matemática escolar. Una realización material o cognitiva de esta operación está fuera del alcance humano.
Estos errores y otros ayudan poco a la comprensión cabal del conocimiento matemático que comúnmente, en el ámbito escolar, lo reducen a la operatividad. La matemática es un conjunto de sistemas formales conceptualmente interpretados, de ello resultan técnicas y procedimientos, pero también teoremas que enriquecen su contenido. Reducir la matemática a las técnicas prácticas (generando lo que muchos llaman un lenguaje) es desconocer la esencia del conocimiento matemático y del trabajo matemático que establece ideas, conexiones e interpretaciones conceptuales, para luego formalizar y descubrir propiedades, belleza intrínseca, un mundo fascinante: la invención más grande del intelecto humano.
En el ámbito escolar muchas veces se aceptan afirmaciones (por ejemplo, lo que hemos tratado en este artículo) sin mayor justificación o análisis, incurriendo en imprecisiones, y dudas escolares. La formación matemática del profesor es esencial para un discurso sólido y fundamentado, la claridad en la exposición es fundamental.
Dentro de la matemática, existen escenarios en donde es posible la división por el neutro de la operatoria, es un mundo fascinante del álgebra abstracta; incluso el infinito ( es incluido en los números reales, ampliando su riqueza conceptual. Existen realizaciones geométricas (por ejemplo, la geometría proyectiva) que lo incluyen, generando nuevos sistemas formales en donde emergen propiedades muy interesantes y con conexiones fascinantes.
En la primera mitad del Siglo XX aparece el fenómeno de la masificación de la educación matemática, periodo en que la matemática entra en la revolución del formalismo hilbertiano.
En la novela Los crímenes de Oxford, su autor, el doctor en Matemáticas y escritor argentino Guillermo Martínez, es un ejemplo de convergencia de estas dos áreas aparentemente disímiles: matemáticas y literatura.
La característica esencial en su trabajo era que no estaba interesado en resolver problemas sino en la comprensión conceptual profunda y completa de las estructuras que se van tejiendo en el intrincado mundo matemático.
En la ruleta los resultados son equiprobables, no hay predilección por ningún número o color.
Uno de los conceptos que más ha apasionado a los seres humanos es la idea de infinito.
Desde el inicio de la cuarta revolución matemática, en las primeras décadas del Siglo XX, el formalismo hilbertiano ha caracterizado el trabajo matemático hasta el día de hoy. Este paradigma histórico del formalismo se caracteriza por...
Esta medalla tiene la imagen del matemático griego Arquímedes y una inscripción que dice “Trascenderse a uno mismo y dominar el mundo”.
La teoría de la medida es una parte de la matemática contemporánea.
Harald Helfgott saltó a la fama mundial en 2012 cuando presentó a la comunidad matemática la demostración de la conjetura débil de Goldbach.
Toda investigación no es necesariamente científica, a veces se confunde con investigación tecnológica, o peor, con informes técnicos. Aclararemos estas confusiones en este artículo.
Ninguno de estos libros me parece copia o similares a los libros estándar.
La recta geométrica como objeto matemático tiene una naturaleza distinta a los números.
Los objetos matemáticos, como constructos, se conciben en la mente humana; para ello se debe tener una idea precisa para formalizarlos y que luego emerjan sus propiedades.
Mientras el trabajo matemático tiene reglas, axiomas, y su libertad está en función de estar gobernado por sistemas formales; en el trabajo filosófico...
Cada 14 de marzo se celebra el a la Matemática. Esta fecha fue elegida en virtud de que hace alusión a 3.14, que es el valor aproximado del enigmático número Pi (π).
Chimalhuacán es el municipio más inseguro del EDOMEX
Los cuatro municipios más inseguros del Edomex son gobernados por Morena
Va Morena contra plataformas digitales; impulsa ley censura
Palestinos en la inanición; Gaza vive la peor crisis alimentaria desde octubre de 2023
Autorizan portación de armas a funcionarios de Pemex y CFE
Sonarán celulares en el Primer Simulacro Nacional 2025
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador