Cargando, por favor espere...

UDYAT
Paolo Ruffini: un matemático profundamente católico
Médico y matemático con profundas convicciones católicas, con salud frágil toda su vida, publicó varias obras entre las que se encuentra Sobre la determinación de las raíces en las ecuaciones numéricas de cualquier grado.


En la época en que grandes matemáticos como Euler, Lagrange, Gauss y Cauchy, brillaban en los ambientes académicos europeos, nace en Valentano, Estados Pontificios (hoy Italia), un matemático popular y desconocido a la vez, popular porque existe en los medios escolares un conocido método de división sintética de polinomios que lleva su nombre; desconocido puesto que fue opacado por los grandes matemáticos de su época. Se trata de Paolo Ruffini (1765-1822) médico y matemático con profundas convicciones católicas.

Paolo Ruffini tenía una salud frágil, producto de episodios epidemiológicos que sufrió desde niño, luego se contagió de tifus y adquirió pleuresía, enfermedades de las que nunca pudo recuperarse. Estudió matemáticas y medicina en la Universidad de Módena, dedicando toda su vida a la Iglesia Católica; asistía a misa diariamente, era muy ordenado y con una alta capacidad de concentración; de carácter sencillo, muy humano con el prójimo, pero a la vez con un pensamiento conservador y muy nacionalista, dedicado a la vida académica como profesor universitario y a la iglesia católica.

En 1788, Paolo Ruffini fue nombrado profesor de la cátedra de Instituciones Analíticas y en 1791 obtuvo la cátedra de Elementos de Matemática de la Universidad de Módena; sin embargo, por su conservadurismo en algunos aspectos fue suspendido de la universidad, dedicándose un tiempo a la medicina hasta que, en 1799 fue repuesto en la cátedra de Elementos de Matemática y Análisis y, en 1804, accedió a la cátedra de Cálculo Infinitesimal.

Desde el punto de vista matemático, Paolo Ruffini demostró que “cualquier ecuación de grado superior a cuatro es irresoluble por radicales”, conclusión que fue publicada en 1799 en su obra Teoría general de las Ecuaciones. Sin embargo, la prueba presentada no tuvo una completa aceptación en el mundo académico de su época, que consideró que se apoyaba en una hipótesis no fundamentada, al afirmar que los radicales pueden expresarse como funciones racionales de las raíces. Más tarde, el noruego Niel Abel completó la prueba.

En 1804, Paolo Ruffini publicó su obra Sobre la determinación de las raíces en las ecuaciones numéricas de cualquier grado, elaborando un método de aproximación de raíces de una ecuación polinómica, para ello utilizó el método que hoy día lleva su nombre. Otro de los aportes relevantes de Paolo Ruffini se ubicó en la naciente Teoría de Grupos Abstractos, en donde obtuvo resultados sobre subgrupos engendrados por s y por permutaciones u, v,…., para luego demostrar que el subgrupo tiene 20, 60 o 120 elementos.

La vida de Paolo Ruffini transitó entre la universidad y la iglesia; escribió manuales en oposición a los principios materialistas y deterministas de la época, en su obra De la inmaterialidad del alma, dedicado al Papa Pío VII, demuestra, usando argumentos matemáticos (lógicos), que un ser dotado de la facultad de conocer es necesariamente inmaterial. Una segunda obra de carácter filosófico es Reflexiones críticas en torno a la probabilidad del señor Conte Laplace, en donde defiende el libre albedrío frente a la concepción determinista, rechaza de plano la ley de los grandes números, argumentando la falta de solidez, puesto que no se considera al ser que ordenó el mundo y que hace posible la argumentación matemática.

En 1814, Paolo Ruffini fue nombrado rector de la Universidad de Módena, en donde ocupó la cátedra de matemática aplicada, medicina práctica y clínica médica. Su labor como rector fue una leal aceptación de las normas católicas, que por aquella época influían en el gobierno de la universidad. En 1820 ocupó la presidencia de la Sociedad Italiana de Ciencias, cargo que recibió con la más absoluta humildad y religiosidad.

Progresivamente, por la frágil salud que lo acompañó toda su vida, fue perdiendo fuerza hasta fallecer en 1822 a los 56 años; la parte médica indica “fallecimiento por pericarditis crónicaˮ.


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

La telepatía es cuestión de tiempo: Elon Musk

“El paciente podrá hacer llamadas telefónicas, manejar una computadora o comunicarse sin la necesidad de mover sus propios músculos, que actualmente están comprometidos", afirmó el multimillonario Elon Musk.

huitlacoche.jpg

Aunque amado por unos y odiado por otros, el huitlacoche tiene un papel relevante en la economía, gastronomía y en la ciencia.

Conagua.jpg

Estos datos se obtienen de las observaciones que realiza la Conagua en las estaciones climatológicas.

pi.jpg

El desarrollo de la sociedad planteó nuevos retos que propiciaron la creación de nuevas herramientas, que ayudaron a encontrar el área exacta de un círculo de radio uno.

Tulipanes.jpg

Las plantas no florecen en primavera, después del invierno, por casualidad. En realidad, la producción de flores ocurre como consecuencia de una “planeación”.

hojas.jpg

¿Realmente son nocivas para el ecosistema? Un ambientalista dirá: “sí, porque desplazan especies nativas”. Sin embargo, ciertas necesidades se satisfacen mejor con especies exóticas que con nativas, por lo que es necesario asumir riesgos.

pla.jpg

La influencia que han ejercido las ideas de Platón (Atenas, 429-347 a. C.) en la mente de los matemáticos perdura hasta nuestros días. Matemáticos contemporáneos como G. H. Hardy y Kurt Gödel son declarados platonistas.

romeo905.jpg

Hoy más que nunca, es urgente y necesario rescatar la ciencia y practicarla, si no queremos regresar a la época del oscurantismo y el absolutismo.

¿Qué es la matemática filosófica? Parte II

Es posible crear una matemática filosófica desde el hacer de un matemático que sea realmente relevante y visionaria. Debe de ser una reflexión humanizante, pero a la vez esclarecedora del mundo de las ideas formales.

ab.jpg

Si la incidencia de plagas y enfermedades no acaba con los bosques, sí reduce significativamente su actividad fotosintética. En los tiempos que corren esto contribuye al calentamiento global.

esta.jpg

Las buenas noticias disparadas desde Palacio Nacional, que pintan a un México próspero y “feliz”, parecen no corresponderse con las estadísticas del INEGI.

esp.jpg

En este artículo no hablaré de los libros que son útiles para la enseñanza, ni de divulgación, me centraré en libros estrictos de la disciplina. Aunque la matemática y la filosofía son distintos, tienen elementos en común.

mos.jpg

Hace un par de años tuve dolor muscular, cansancio, fiebre y malestar general; por los síntomas, pensé que era Covid-19; pero tras varias pruebas, el diagnóstico final fue dengue.

udyat.jpg

Los resultados matemáticos de Gödel han causado una grieta en el conocimiento matemático, misma que hoy tiene consecuencias filosóficas profundas.

ROMI.jpg

Evariste Galois fue uno de los grandes genios de la humanidad y el matemático más joven de la historia matemática.