Cargando, por favor espere...

Tlaixaxiliztli
Los infinitésimos y su historia
Se sabe que Arquímedes calculó el valor del número irracional π a 11 decimales cuando se aproximó al área de un círculo de radio uno.


Para dar solución a sus necesidades prácticas, el hombre tuvo que perfeccionar los medios de trabajo, sus métodos de investigación y profundizar en los conocimientos sobre fenómenos concretos. Fue así como al calcular áreas de terrenos accidentados, volúmenes de objetos irregulares y organizar su tiempo durante el día para optimizar su quehacer diario, el hombre desarrolló una forma precisa de cálculo y medición conocido hoy como cálculo de infinitésimos o cantidades infinitamente pequeñas.

Los infinitésimos surgieron con la teoría atomista de Leucipo de Mileto (siglo V a. C.) y Demócrito de Abdera (460–370 a. C.) para dar respuesta al problema de las magnitudes continuas, consideradas en la antigüedad como conjunto de partículas infinitamente pequeñas denominadas átomos. Apoyándose en estas consideraciones atomistas, Zenón de Elea (490–430 a. C.), con sus más de 40 aporías, entre las que destacan La dicotomía de Aquiles y la tortuga, El corredor en el estadio y La flecha voladora, hizo ver a sus contemporáneos que era imposible caracterizar una magnitud continua como un conjunto de partículas infinitamente pequeñas.

Pero llegó Eudoxo de Cnido (390–337 a. C.), uno de los matemáticos más sobresalientes de la Academia de Platón, quien demostró que Zenón estaba en un error: que siempre es posible caracterizar una magnitud continua haciendo que algo sea tan pequeño como se quiera. Con este planteamiento, Eudoxo resolvió las aporías de Zenón, que habían surgido en el tratamiento de los procesos infinitos, y desarrolló un método geométrico de aproximación conocido como método por agotamiento, usado para hallar áreas de figuras curvilíneas, entre ellas el círculo. Para encontrar el área aproximada del círculo, Eudoxo calculó primero el área del polígono inscrito. Al agregarle más lados, se dio cuenta que el polígono se asemejaba más al círculo; con eso concluyó que si observaba el área del polígono, encontraría también el área del círculo.

La tarea, sin embargo, se abandonó durante un largo periodo y fue con Arquímedes de Siracusa (287–212 a. C.) cuando se retomó. Este genio, para calcular áreas de superficies curvas y volúmenes de sólidos, combinó el método por agotamiento con el de reducción al absurdo, el cual consiste en construir una contradicción usando la negación de lo que se quiere demostrar. El trabajo de Arquímedes consistió en calcular, mediante el método por agotamiento, el área de un polígono regular de 96 lados, en un círculo de radio uno, primero, y circunscrito después. Luego comparó las áreas de esos polígonos y observó que la diferencia entre ellas era muy pequeña, a tal grado que las áreas de cada uno podrían considerarse equivalentes. Arquímedes construyó una contradicción mediante la negación de dicha equivalencia y demostró efectivamente que el área del polígono inscrito era equivalente al área del polígono circunscrito, y que cada una de las áreas se aproximaba a la del círculo considerado. Se sabe que Arquímedes calculó el valor del número irracional π a 11 decimales cuando se aproximó al área de un círculo de radio uno.

Con todo y su genialidad, el más notable de los científicos de Siracusa no resolvió el problema en su totalidad. El área de los dos polígonos usados por él para encontrar el área del círculo radio uno, no cubría el área total de éste, pues quedaban espacios infinitamente pequeños que él no pudo cubrir.

No fue sino hasta 1635 cuando el matemático italiano Bonaventura Francesco Cavalieri (1598–1647), en su obra traducida y titulada Una nueva forma de desarrollar la geometría usando el indivisible continuo, retomó el método por agotamiento de Eudoxo y el de reducción al absurdo de Arquímedes, e incorporó a su obra la teoría infinitesimal como actualmente se estudia en las matemáticas superiores, incluyendo con ello el concepto formal del infinito y pequeñas cantidades geométricas de Kepler. Con la introducción del infinito en las matemáticas, Cavalieri logró con éxito encontrar el área del círculo. A partir de entonces, la medida de las longitudes y el cálculo de áreas y volúmenes comenzaron a calcularse mediante la suma de una infinidad de indivisibles, permitiendo al inglés Isaac Newton (1643–1727) y al alemán Gottfried Wilhelm Leibniz (164–1716), unificar y complementar el cálculo diferencial con el cálculo integral. 


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

Sangre en la Luna y en la Tierra: sobre los eclipses, los mayas e Hipatia de Alejandría

La noche del 14 de marzo, un astro brillante se teñía de rojo, era la Luna de sangre. 1610 años antes también lo hizo la Tierra, con la sangre de Hipatia.

Helicoptero.jpg

Ingenuity dispone de dos cámaras, una en blanco y negro para la navegación y otra en color, que está orientada para tomar imágenes del terreno.

robot.jpg

Niños inquietos e inteligentes como el que me preguntó hay muchos en nuestro país; pero muy pocos son rescatados y apoyados para continuar con sus estudios

Cirujano chino realiza primera operación a distancia desde Roma hasta Beijing

Cabe destacar que el proceso fue vigilado por médicos presentes en el quirófano de Beijing para garantizar la seguridad en todo momento.

ni.jpg

Son uno de los pocos grupos totalmente originarios que aún existen en el mundo entero; persisten alrededor de seis mil 200 individuos. En las últimas décadas han enfrentado distintos episodios de despojo de sus bosques.

Proyecto Saguaro, otro capítulo de una larga historia

Una empresa estadounidense pretende transportar gas natural licuado (GNL) a Asia, pero las políticas ecológicas estadounidenses le imponen varias restricciones.

Leonard Euler y las notaciones matemáticas

Es considerado el más prolífico de los matemáticos; su nombre figura en fórmulas, teoremas, números, integrales y constantes en distintas ramas de la matemática.

abeja2.jpg

Para nuestro país, la polinización representa una ganancia económica de entre 100 y 250 dólares por hectárea.

pica.jpg

Ramón Picarte siempre pensó que la matemática debería ser un aporte para sacar a las personas de la pobreza; con esa idea organizó e impulsó diferentes sociedades cooperativas de artesanos y trabajadores de Santiago.

phil.jpg

La lucha por el control de los datos personales se traduce en la posibilidad de poder económico, político e ideológico. De manera permanente somos vigilados por empresas y funcionarios.

meo.jpg

Sirva de ejemplo la vida de Bonaventura Francesco Cavalieri para que los jóvenes mexicanos decidan estudiar matemáticas y comprendan que es útil en la resolución de problemas reales.

mat.jpg

Pocas son las mujeres que han obtenido frutos tan importantes en las matemáticas a la par de muchos hombres. Es el caso de Ada Lovelace, a ella se reconoce como la pionera de la programación de la máquina analítica.

teatro.jpg

Invadiendo el mundo, es una cinta que exhibe con nitidez escenas racistas sobresalientes como la que provocó la muerte del afroamericano George Floyd en Minneapolis.

NEANDHERTAL.jpg

El androcentrismo es la palabra empleada para hacer referencia a la masculinización de lo cotidiano en las prácticas sociales, culturales y en el ámbito científico.

ge1.jpg

“Es por demás evidente que la acusación que se ha lanzado desde la FGR es absurda e impropia de un país gobernado bajo principios mínimos de Estado de derecho".